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Mathematical basics
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Open, Closed, and Compacts Sets

Definitions

A set C ⊂ Rn is open if for all x ∈ C there is ε > 0 s.t. the ball
of radius ε around x , B(x , ε), is contained in C:B(x , ε) ⊂ C
A set C ⊂ Rn is closed if its complement is open
A set is closed if and only if it contains all its limit points.
The closure C of a set C is

C = {x | there is a sequence (xn)n ⊂ C s.t. lim
n→∞

xn = x}

The interior C̊ of C is {x ∈ C | there is ε > 0 s.t. B(x , ε) ⊂ C}
A set C ⊂ Rn is compact if it is closed and bounded

Bolzano-Weierstrass Theorem

Let (xn)n∈N ⊂ C be a sequence in the compact set C. Then
there is a convergent subsequence (xnk ) with lim

k→∞
xnk = x̂ ∈ C
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Continuity

Definition: Lower semi-continuity

A function E : Rn → R is lower semi-continuous (l.s.c.), if for
all u it holds that

lim inf
v→u

E(v) ≥ E(u)

Definition: Lipschitz Continuity

A function f : C ⊂ Rn → Rm is Lipschitz continuous with
Lipschitz constant L if for all x , y ∈ C

‖f (x)− f (y)‖2 ≤ L‖x − y‖2

A function f : C ⊂ Rn → Rm is locally Lipschitz continuous if
for every x ∈ C there exists ε > 0 such that f|B(ε,x) is Lipschitz
continuous
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Convexity
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Convex energy minimization problems

A convex energy minimization problem is

û ∈ arg min
u∈C

E(u),

where C ⊂ Rn convex set, E : C → R convex function.

1. What is a convex set?

Definition

A set C ⊂ Rn is called convex, if

αx + (1− α)y ∈ C, ∀x , y ∈ C, ∀α ∈ [0,1].
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Convex set

The following operations preserve the convexity of a set
• Intersection
• Minkowski sum
• Closure
• Interior
• Linear Transformation

The union of convex sets is not convex in general.

Polyhedral sets are always convex, cones not necessarily.
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Convex energy minimization problems

û ∈ arg min
u∈C

E(u),

where C ⊂ Rn convex set, E : C → R convex function.

1. What is a convex set? We know this now

2. What is a convex function?

Definition: Convex Function

Function E : C → R is convex if C is a convex set and for all
u, v ∈ C and all θ ∈ [0,1] it holds that

E(θu + (1− θ)v) ≤ θE(u) + (1− θ)E(v)

E is strictly convex if the inequality is strict for all θ ∈ (0,1),
v 6= u
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Convex functions

The following operations do preserve the convexity of a
function

• Non-negative weighted sum
• Composition with an affine function
• Pointwise maximum and supremum

Useful

E : C ⊂ Rn → R is convex if and only if for any x , y ∈ C,
F (t) = E(x + ty) is convex for all t ∈ R such that x + ty ∈ C

The sum of a convex function and a strictly convex function is
strictly convex.
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Extended Real-valued Functions

Given a convex set C and a convex function E : C → R

û ∈ arg min
u∈C

E(u), (1)

can be formulated as an unconstrained minimization by
“introducing” the constraint u ∈ C into the energy function E .

Formally, (1) is written as

û ∈ arg min
u∈Rn

Ẽ(u),

in terms of the extended real-valued function Ẽ

Ẽ :Rn → R := R ∪ {∞}

u 7→ Ẽ(u) =

{
E(u) if u ∈ C,
∞ else.
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Revisiting the definition of convex functions

The function E : Rn → R is convex if
• its domain dom(E) := {u ∈ Rn | E(u) <∞} is a convex

set.
• For all u, v ∈ dom(E) and all θ ∈ [0,1] it holds that

E(θu + (1− θ)v) ≤ θE(u) + (1− θ)E(v)

E is strictly convex if the inequality is strict for all θ ∈ (0,1),
v 6= u

Defintion: Proper Function

Function E : Rn → R is proper if its domain is not empty
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Connection between Convex Sets and Functions

Defintion: Epigraph

Let E : Rn → R be a proper function, its epigraph epi(E) is

epi(E) := {(u, α) | E(u) ≤ α}

Theorem

A proper function E : Rn → R is convex if and only if its
epigraph is convex

Proof: Board.
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First example of an imaging problem: Inpainting

Example: Inpainting

min
u∈Rn×m

∑
i,j

(ui,j − ui−1,j )
2 + (ui,j − ui,j−1)2 s.t. ui,j = fi,j ∀(i , j) ∈ I

with index set I of pixels to keep and suitable boundary
conditions.
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Properties of convex functions

Theorem

Let E : Rn → R be convex. Any local minimum of E is global.

Theorem: Monotonicity of the gradient

Let E : Rn → R be proper, convex and differentiable at
u ∈ dom(E).

E(v)− E(u)− 〈∇E(u), v − u〉 ≥ 0 ∀v ∈ Rn

Proofs: Board.

Alternative Definition

Function E : C → R is convex if and only if C is convex and for
all u, v ∈ C, β ≥ 0 such that u + β(u − v) ∈ C it holds that

E(u + β(u − v)) ≥ E(u) + β(E(u)− E(v))
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Properties of convex functions

The behavior of convex functions at the boundary of their
domain can be out of control if unless they are closed.

Definition: Closed convex function

A convex function is closed if its epigraph is closed.

For instance:

E(x , y) =

{
0 if x2 + y2 < 1
φ(x , y) if x2 + y2 = 1

• domE = {(x , y) ∈ R2 : x2 + y2 ≤ 1} is closed and convex
• E is convex for arbitrary φ(x , y) > 0 on the unit circle
• E is closed if and only if φ(x , y) = 0
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Properties of convex functions

The behavior of convex function at the boundary of their
domain can be disappointing, but their behavior in the interior
of its domain is very simple.

Locally Bounded

Let E be convex and u ∈ intdom(E), then E is locally upper
bounded at u.

Continuity of Convex Functions

If E : Rn → R ∪ {∞} is convex, then E is locally Lipschitz (and
hence continuous) on int(dom(E)).

Proofs: Board.
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Existence of minimizers

Theorem: Existence of minimizers

Let E : Rn → R be l.s.c. and let there exist an α such that the
sublevelset

{u ∈ Rn | E(u) ≤ α}

is nonempty and bounded, then there exists

û ∈ arg min
u

E(u)

Proof: Board.

Theorem: Equivalence of l.s.c. and closedness

For E : Rn → R the following two statements are equivalent
• E is lower semi-continuous (l.s.c.)
• E is closed (its epigraph is closed)

Proof: Board.
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Existence and uniqueness of minimizers

Definition: Coercivity

A function E : Rn → R ∪ {∞} is called coercive if E(vn)→∞
for all sequences (vn)n with ‖vn‖ → ∞.

Remark: Coercivity implies existence of a bounded sublevelset

Existence of a minimizer for function with full domain

Let E : Rn → R be convex and coercive, then an element
û ∈ arg minu E(u) exists.

Proof:
• dom(E) = Rn, E convex⇒ E is continuous.
• E is coercive, i.e. there exists a non-empty bounded

sublevelset.

Theorem: Uniqueness

If E : Rn → R is strictly convex, then there exists at most one
local minimum which is the unique global minimum.
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Optimality conditions: differentiable unconstrained problem

How can we determine if

û ∈ arg min
u∈Rn

E(u)? (1)

Corollary to Monotonicity of the Gradient

Let E : Rn → R be proper, convex, and differentiable at
u ∈ dom(E). If ∇E(u) = 0 then u is a global minimum of E .

Examples: derive the optimality conditions for

E(u) = ‖u − f‖2
2 =

n∑
i=1

(ui − fi )2

E(u) = ‖Au − f‖2
2 for a matrix A ∈ Rm×n

E(u) = ‖u‖1 =
n∑

i=1

|ui |

We need a theory for non-differentiable functions (like `1)
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The subdifferential

Definition: Subdifferential

Let E : Rn → R be convex, the subdifferential of E at u is

∂E(u) = {p ∈ Rn | E(v)− E(u)− 〈p, v − u〉 ≥ 0, ∀v ∈ Rn}

• Elements of ∂E(u) are called subgradients.
• If ∂E(u) 6= ∅, we call E subdifferentiable at u.
• By convention, ∂E(u) = ∅ for u /∈ dom(E).

Example: E(x) = |x | has ∂E(0) = [−1,1]

∀g ∈ [−1,1], E(x) = |x | ≥ gx = E(0) + g(x − 0)

∂E(u) is closed and convex because it is defined by a set of
linear constraints.
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Geometric Interpretation

Definition: Supporting Hyperplane

A supporting hyperplane to a set S ⊂ Rn is a hyperplane
{x ∈ Rn | 〈a, x〉 = b}, a 6= 0, such that

• S ⊂ {x ∈ Rn | 〈a, x〉 ≤ b} or S ⊂ {x ∈ Rn | 〈a, x〉 ≥ b}
• ∃y ∈ ∂S (the boundary of S) such that 〈a, y〉 = b.

Theorem

Any subgradient p ∈ ∂E(u) represents a non-vertical
supporting hyperplane to epi(E) at (u,E(u))

Let p ∈ ∂E(u). Then

E(v)− E(u)− 〈p, v − u〉 ≥ 0 ∀v ∈ Rn

⇒ α− E(u)− 〈p, v − u〉 ≥ 0 ∀(v , α) ∈ epi(E)

⇒
〈[
−p
1

]
,

[
v
α

]
−
[

u
E(u)

]〉
≥ 0 ∀(v , α) ∈ epi(E).
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Subdifferential Properties

Theorem: Optimality condition

Let 0 ∈ ∂E(û), then û ∈ arg minu E(u)

Proof: immediate from definition of subgradient

Subdifferential and derivatives

Let the convex function E : Rn → R ∪ {∞} be differentiable at
u ∈ int(dom(E)). Then

∂E(u) = {∇E(u)}.



Convex analysis

Calculus basics

Convexity
Convex sets

Convex functions

Existence of Minimizers

Optimality conditions
Derivative

Subdifferential

from 29.10.2017, slide 23/ 25

Subdifferentiability and Convexity

The subdifferentiability of a function implies its convexity.

Theorem

If for any u ∈ dom(E) the subdifferential ∂E(u) is non-empty,
then E is a convex function.

The converse statement is also true.

Theorem: Nesterov, Th. 3.1.1

If E is a closed convex function and u ∈ int(dom(E)), then
∂E(u) is a non-empty bounded set.

The conditions of this theorem cannot be relaxed, e.g.,
E(u) = −

√
u is convex and closed in its domain {u : u ≥ 0},

but its subdifferential does not exists at 0.
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Subdifferential rules

Theorem: Sum rule (Nesterov, Lemma. 3.1.9)

Let E1, E2 be convex functions such that

int(dom(E1)) ∩ int(dom(E2)) 6= ∅,

then ∂(E1 + E2)(u) = ∂E1(u) + ∂E2(u)

Theorem: Chain rule (Nesterov, Lemma. 3.1.8)

If A ∈ Rm×n, E : Rm → R ∪ {∞} is convex, and
int(dom(E)) ∩ range(A) 6= ∅, then ∂(E ◦ A)(u) = A∗∂E(Au)

Examples: compute ∂E(u)

E(u) = |u|

E(u) =
m∑

i=1

| < ai ,u > −bi |

E(u) = ‖u‖1

(2)
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Summary

• Convex functions
• Every local minimum is global
• First order optimality condition is sufficient

• The optimality condition for û to minimize E is

0 ∈ ∂E(û)

• The subdifferential ∂E(u)
• is set valued.
• generalizes the derivative.
• ∂E(u) = {∇E(u)} is E is differentiable at u.
• can be identified with supporting hyperplanes to epi(E).
• Obeys the “usual” sum and chain rules.

We now have all tools that are necessary to discuss a first
class of minimization algorithms for determining

û ∈ argmin
u

E(u)

Up next: Gradient-based Algorithms.
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