Summary Lecture

V. Estellers

WS 2017

Convexity

Convexity of $E:\mathbb{R}^n\to\mathbb{R}\cup\{\infty\}$: For all $u,v\in\mathbb{R}^n$ and all $\theta\in[0,1]$ it holds that

$$E(\theta u + (1 - \theta)v) \le \theta E(u) + (1 - \theta)E(v)$$
 (c)

We call E strictly convex, if the inequality (c) is strict for all $\theta \in (0,1)$, and $v \neq u$.

We call E m-strongly convex if $G(u) = E(u) - \frac{m}{2} ||u||^2$ is convex.

Existence+uniqueness

The **domain** of E is

$$dom(E) := \{ u \in \mathbb{R}^n \mid E(u) < \infty \}.$$

We call E **proper** if $dom(E) \neq \emptyset$.

The **epigraph** of E is defined as

$$epi(E) := \{(u, \alpha) \mid E(u) \le \alpha\}.$$

A function is called **closed** if its epigraph is a closed set.

If E is closed and there exists a nonempty and bounded sublevelset

$$\{u \in \mathbb{R}^n \mid E(u) \le \alpha\},\$$

then E has a minimizer.

The subdifferential: Optimality Conditions

The **subdifferential** of a convex function E is

$$\partial E(u) = \{ p \in \mathbb{R}^n \mid E(v) - E(u) - \langle p, v - u \rangle \ge 0 \quad \forall v \in \mathbb{R}^n \}$$

If E is differentiable at u then

$$\partial E(u) = {\nabla E(u)}.$$

For convex functions, any local minimizer is a global minimizer. The **optimality condition** is

$$\hat{u} \in \arg\min_{u} E(u) \Leftrightarrow 0 \in \partial E(\hat{u})$$

If E has a minimizer and is strictly convex, the minimizer of E is unique.

The subdifferential: Sum and Chain Rules

The **relative interior** of a convex set M is defined as

$$\mathsf{ri}(M) := \{ x \in M \mid \forall y \in M, \ \exists \lambda > 1, \ \mathsf{s.t.} \ \lambda x + (1 - \lambda)y \in M \}.$$

If E is proper and convex and $u \in ri(dom(E))$, $\partial E(u)$ is non-empty.

Sum rule – Let E_1 , E_2 be convex functions such that $\mathrm{ri}(\mathrm{dom}(E_1))\cap\mathrm{ri}(\mathrm{dom}(E_2))\neq\emptyset$, then it holds that

$$\partial(E_1 + E_2)(u) = \{ p_1 + p_2 \mid p_1 \in \partial E_1(u), \ p_2 \in \partial E_2(u) \}.$$

Chain rule – If $A \in \mathbb{R}^{m \times n}$, $E : \mathbb{R}^m \to \mathbb{R} \cup \{\infty\}$ is convex, and $\operatorname{ri}(\operatorname{dom}(E)) \cap \operatorname{range}(A) \neq \emptyset$, then it holds that

$$\partial(E \circ A)(u) = \{A^T p \mid p \in \partial E(Au)\}.$$

Contractions

Question: When does the following fixed-point iteration converge?

$$u^{k+1} = G(u^k) (fp)$$

We call $G: \mathbb{R}^n \to \mathbb{R}^n$ a **contraction** if it is Lipschitz-continuous with constant L < 1, i.e. if there exists a L < 1 such that for all $u, v \in \mathbb{R}^n$

$$||G(u) - G(v)||_2 \le L||u - v||_2.$$

If G is a contraction, it has a **unique fixed-point** \hat{u} and (fp) **converges** linearly to \hat{u} .

Averaged operators

An operator $H:\mathbb{R}^n \to \mathbb{R}^n$ is **non-expasive** if it is Lipschitz-continuous with constant 1, i.e. if for all $u, v \in \mathbb{R}^n$

$$||H(u) - H(v)||_2 \le ||u - v||_2.$$

An operator $G:\mathbb{R}^n \to \mathbb{R}^n$ is called **averaged** if there exists a non-expansive mapping $H:\mathbb{R}^n \to \mathbb{R}^n$ and a constant $\alpha \in (0,1)$ s.t.

$$G = \alpha I + (1 - \alpha)H.$$

If $G:\mathbb{R}^n \to \mathbb{R}^n$ is averaged and has a fixed-point, then the iteration

$$u^{k+1} = G(u^k)$$

converges to a fixed point of G for any starting point $u^0 \in \mathbb{R}^n$.

Averaged operators

An operator $G:\mathbb{R}^n \to \mathbb{R}^n$ is called **firmly nonexpansive**, if for all $u,v\in\mathbb{R}^n$ it holds that

$$||G(u) - G(v)||_2^2 \le \langle G(u) - G(v), u - v \rangle.$$

An operator $G: \mathbb{R}^n \to \mathbb{R}^n$ is **firmly nonexpansive** if and only if G is averaged with $\alpha = \frac{1}{2}$.

Compositions of averaged operators are averaged.

Gradient descent

Gradient descent iteration: $u^{k+1} = u^k - \tau \nabla E(u^k)$

E is L-smooth if E is differentiable and ∇E is L-Lipschitz continuous.

Baillon-Haddad Th.: A continuously differentiable convex function $E:\mathbb{R}^n\to\mathbb{R}$ is L-smooth if and only if $\frac{1}{L}\nabla E$ is firmly nonexpansive.

Theorem: For E convex and L-smooth, gradient descent with a fixed step-size $\tau \in (0,2/L)$ converges to a solution of $\min_{u \in \mathbb{R}^n} E(u)$.

As E is L-smooth, $\frac{1}{L}\nabla E=\frac{1}{2}(I+T)$ for some non-expansive operator T.

$$G(u) = u - \tau L \frac{1}{L} \nabla E(u) = \left(1 - \frac{L\tau}{2}\right) I + \frac{L\tau}{2} (-T)$$

is averaged for $\tau \in (0,2/L)$. Then $u^{k+1} = G(u^k) = u^k - \tau \nabla E(u^k)$ converges to a fixed-point of G (a minimizer of E as $\nabla E(u^*) = 0$).

Gradient projection

Consider the problem $\min_{u \in C} \ E(u)$ for $E, \ C$ convex and E L-smooth.

The gradient projection iteration is
$$u^{k+1} = \operatorname{proj}_C(\underbrace{u^k - \tau \nabla E(u^k)}_{G_\tau(u^k)}).$$

We can sow that the projection onto a non-empty closed convex set is firmly nonexpansive \Rightarrow proj $_C$ is averaged.

If E is L-smooth and $\tau \in (0,2/L)$, then G_{τ} is averaged and $\operatorname{proj}_C(G_{\tau})$ is averaged because the composition of averaged operators is averaged. Then the gradient projection alg. converges to a minimizer of E over C as a fixed-point iteration $u^{k+1} = \operatorname{proj}_C(G_{\tau}(u^k))$ of an averaged operator.

Proximal Operator

The mapping $\operatorname{prox}_E:\mathbb{R}^n\to\mathbb{R}^n$ defined as

$$\operatorname{prox}_E(v) := \underset{u \in \mathbb{R}^n}{\operatorname{argmin}} \ E(u) + \frac{1}{2} \left\| u - v \right\|^2$$

for a closed, proper, convex function $E: \mathbb{R}^n \to \mathbb{R} \cup \{\infty\}$ is called the **proximal operator** or **proximal mapping** of E.

The proximal operator prox_E for a closed, proper, convex function E is firmly nonexpansive and therefore averaged with $\alpha=1/2$.

Proximal gradient

Consider the problem $\min_{u \in \mathbb{R}^n} F(u) + G(u)$ for F convex and G convex and L smooth. Then the iteration

$$u^{k+1} = \mathsf{prox}_{\tau F}(u^k - \tau \nabla G(u^k))$$

is called the **proximal gradient method**.

Let E(u)=F(u)+G(u) have a minimizer, and $\tau\in(0,2/L)$, then the proximal gradient method **converges** to a minimizer of E.

The **convergence rates** of gradient descent, gradient projection, and proximal gradient are **suboptimal**. They are accelerated by extrapolation.

Convex conjugation

The **convex conjugate** of a proper function $E: \mathbb{R}^n \to \mathbb{R} \cup \{\infty\}$ is

$$E^*(p) = \sup_{u} \langle u, p \rangle - E(u).$$

It is always convex and closed.

The Fenchel-Young inequality states that

$$E(u) + E^*(p) \ge \langle u, p \rangle,$$

and that equality holds if and only if $p \in \partial E(u)$.

For a proper, closed convex function E, its biconjugate $E^{**}=E$.

For a proper, closed convex function E, $p \in \partial E(u) \Leftrightarrow u \in \partial E^*(p)$.

Fenchel Duality

Let E(u) = G(u) + F(Ku) have a minimizer, and let G and F be closed and convex. If there is $u \in ri(dom(G))$ s.t. $Ku \in ri(dom(F))$, then

$$\begin{array}{lllll} & \min_{u} & G(u) + F(Ku) & \mathbf{Primal} \\ & = & \min_{u} \max_{q} & G(u) + \langle q, Ku \rangle - F^{*}(q) \\ & = & \max_{q} \min_{u} & G(u) + \langle q, Ku \rangle - F^{*}(q) \\ & = & \max_{q} & -G^{*}(-K^{*}q) - F^{*}(q) & \mathbf{Dual} \end{array}$$

We are therefore looking for a saddle point (u,q) such that

$$-K^T q \in \partial G(u), \quad Ku \in \partial F^*(q).$$

PDHG

The primal-dual view motivates the definition of an iterative method to find

$$-K^T q \in \partial G(u), \quad Ku \in \partial F^*(q).$$

The primal-dual hybrid gradient (PDHG) method computes

$$\begin{pmatrix} 0 \\ 0 \end{pmatrix} \in \underbrace{\begin{pmatrix} \partial G & K^T \\ -K & \partial F^* \end{pmatrix}}_{=:T} \begin{pmatrix} u^{k+1} \\ p^{k+1} \end{pmatrix} + \underbrace{\begin{pmatrix} \frac{1}{\tau}I & -K^T \\ -K & \frac{1}{\sigma}I \end{pmatrix}}_{=:M} \begin{pmatrix} u^{k+1} - u^k \\ p^{k+1} - p^k \end{pmatrix}.$$

or in the algorithmic-friendly form of (PDHG)

$$\begin{split} p^{k+1} &= \mathsf{prox}_{\sigma F^*}(p^k + \sigma K(2u^k - u^{k-1})), \\ u^{k+1} &= \mathsf{prox}_{\tau G}(u^k - \tau K^* p^{k+1}), \end{split} \tag{PDHG}$$

Convergence analysis

A set-valued operator T is called **monotone** (a generalization of firmly non-expansive) if $\langle p-q,u-v\rangle \geq 0$ $\forall u,v,p\in T(u),q\in T(v).$

The **resolvent** $(I+T)^{-1}$ of a maximally monotone operator is firmly non-expansive, i.e. averaged with $\alpha=1/2$.

Let T be maximally monotone and let there exist a z such that $0 \in T(z)$. Then the **proximal point algorithm**

$$0 \in T(z^{k+1}) + z^{k+1} - z^k$$

converges to a \tilde{z} with $0 \in T(\tilde{z})$.

Convergence of PDHG

$$\begin{pmatrix} 0 \\ 0 \end{pmatrix} \in \underbrace{\begin{pmatrix} \partial G & K^T \\ -K & \partial F^* \end{pmatrix}}_{=:T} \begin{pmatrix} u^{k+1} \\ p^{k+1} \end{pmatrix} + \underbrace{\begin{pmatrix} \frac{1}{\tau}I & -K^T \\ -K & \frac{1}{\sigma}I \end{pmatrix}}_{=:M} \begin{pmatrix} u^{k+1} - u^k \\ p^{k+1} - p^k \end{pmatrix}.$$

T is maximally monotone, M is positive definite for $\tau\sigma<\frac{1}{\|K\|_{S^\infty}^2}.$

Let $M=M^{1/2}M^{1/2}$, then $M^{-1/2}TM^{-1/2}$ is maximally montone and the **PDHG algorithm is a proximal point algorithm** in $z=M^{1/2}(u;p)$.

If saddle-point problem has a solution and $\tau\sigma<\|K\|_{S^{\infty}}^{-2}$, PDHG converges.

PDHG

The variants of PDHG for functions F^* or G strongly convex converge faster.

Considering

$$\begin{pmatrix} 0 \\ 0 \end{pmatrix} \in \begin{pmatrix} \partial G & K^T \\ -K & \partial F^* \end{pmatrix} \begin{pmatrix} u^{k+1} \\ p^{k+1} \end{pmatrix} + \begin{pmatrix} \frac{1}{\tau}I & -K^T \\ -K & \frac{1}{\sigma}I \end{pmatrix} \begin{pmatrix} u^{k+1} - u^k \\ p^{k+1} - p^k \end{pmatrix}.$$

we measure convergence, and define stopping criteria, in terms of the residuals

$$\begin{split} r_p^{k+1} &= \frac{1}{\sigma}(p^{k+1} - p^k) - K(u^{k+1} - u^k) \\ r_d^{k+1} &= \frac{1}{\tau}(u^{k+1} - u^k) - K^T(p^{k+1} - p^k) \end{split}$$

ADMM

Let us consider

$$\begin{pmatrix} 0 \\ 0 \end{pmatrix} \in \begin{pmatrix} \partial G & K^T \\ -K & \partial F^* \end{pmatrix} \begin{pmatrix} u^{k+1} \\ p^{K+1} \end{pmatrix} + \underbrace{\begin{pmatrix} \frac{1}{\lambda}I & -K^T \\ -K & \lambda KK^T \end{pmatrix}}_{=:M} \begin{pmatrix} u^{k+1} - u^k \\ p^{K+1} - p^k \end{pmatrix}.$$

The resulting M is only positive semi-definite. Exploit fixed point iterations of averaged operators in a different way to show convergence. If we decompose this equation component by component, in u we have

$$\begin{split} u^{k+1} &= \mathsf{prox}_{\lambda G}(u^k - \lambda K^T p^k), \\ p^{k+1} &= \underset{p}{\operatorname{argmin}} \ F^*(p) + \frac{\lambda}{2} \left\| K^T p - K^T p^k - \frac{1}{\lambda} K (2u^{k+1} - u^k) \right\|^2, \end{split}$$

which requires a proximal step to update the primal variable u, like PDHG, and a more difficult subproblem for p.

Primal-Dual Algorithms

Make sure the updates decouple, are easy, and $M \succeq 0$

PDHG, overrelaxation on primal

$$0 \in \begin{bmatrix} \partial G & K^T \\ -K & \partial F^* \end{bmatrix} \begin{bmatrix} u^{k+1} \\ p^{k+1} \end{bmatrix} + \begin{bmatrix} \frac{1}{\tau}I & -K^T \\ -K & \frac{1}{\sigma}I \end{bmatrix} \begin{bmatrix} u^{k+1} - u^k \\ p^{k+1} - p^k \end{bmatrix}.$$

PDHG, overrelaxation on dual

$$0 \in \begin{bmatrix} \partial G & K^T \\ -K & \partial F^* \end{bmatrix} \begin{bmatrix} u^{k+1} \\ p^{k+1} \end{bmatrix} + \begin{bmatrix} \frac{1}{\tau}I & K^T \\ K & \frac{1}{\sigma}I \end{bmatrix} \begin{bmatrix} u^{k+1} - u^k \\ p^{k+1} - p^k \end{bmatrix}.$$

Primal ADMM

$$0 \in \begin{bmatrix} \partial G & K^T \\ -K & \partial F^* \end{bmatrix} \begin{bmatrix} u^{k+1} \\ p^{k+1} \end{bmatrix} + \begin{bmatrix} \lambda K^T K & K^T \\ K & \frac{1}{\lambda} I \end{bmatrix} \begin{bmatrix} u^{k+1} - u^k \\ p^{k+1} - p^k \end{bmatrix}.$$

Corresponding dual ADMM

$$0 \in \begin{bmatrix} \partial G & K^T \\ -K & \partial F^* \end{bmatrix} \begin{bmatrix} u^{k+1} \\ p^{k+1} \end{bmatrix} + \begin{bmatrix} \frac{1}{\lambda}I & -K^T \\ -K & \lambda KK^T \end{bmatrix} \begin{bmatrix} u^{k+1} - u^k \\ p^{k+1} - p^k \end{bmatrix}.$$