# Summary Lecture 

V. Estellers

WS 2017

## Convexity

Convexity of $E: \mathbb{R}^{n} \rightarrow \mathbb{R} \cup\{\infty\}$ : For all $u, v \in \mathbb{R}^{n}$ and all $\theta \in[0,1]$ it holds that

$$
\begin{equation*}
E(\theta u+(1-\theta) v) \leq \theta E(u)+(1-\theta) E(v) \tag{c}
\end{equation*}
$$

We call $E$ strictly convex, if the inequality (c) is strict for all $\theta \in(0,1)$, and $v \neq u$.

We call $E \mathbf{m}$-strongly convex if $G(u)=E(u)-\frac{m}{2}\|u\|^{2}$ is convex.

## Existence+uniqueness

The domain of $E$ is

$$
\operatorname{dom}(E):=\left\{u \in \mathbb{R}^{n} \mid E(u)<\infty\right\}
$$

We call $E$ proper if $\operatorname{dom}(E) \neq \emptyset$.
The epigraph of $E$ is defined as

$$
\operatorname{epi}(E):=\{(u, \alpha) \mid E(u) \leq \alpha\} .
$$

A function is called closed if its epigraph is a closed set.
If $E$ is closed and there exists a nonempty and bounded sublevelset

$$
\left\{u \in \mathbb{R}^{n} \mid E(u) \leq \alpha\right\},
$$

then $E$ has a minimizer.

## The subdifferential: Optimality Conditions

The subdifferential of a convex function $E$ is

$$
\partial E(u)=\left\{p \in \mathbb{R}^{n} \mid E(v)-E(u)-\langle p, v-u\rangle \geq 0 \quad \forall v \in \mathbb{R}^{n}\right\}
$$

If $E$ is differentiable at $u$ then

$$
\partial E(u)=\{\nabla E(u)\} .
$$

For convex functions, any local minimizer is a global minimizer. The optimality condition is

$$
\hat{u} \in \arg \min _{u} E(u) \Leftrightarrow 0 \in \partial E(\hat{u})
$$

If $E$ has a minimizer and is strictly convex, the minimizer of $E$ is unique.

## The subdifferential: Sum and Chain Rules

The relative interior of a convex set $M$ is defined as

$$
\operatorname{ri}(M):=\{x \in M \mid \forall y \in M, \exists \lambda>1 \text {, s.t. } \lambda x+(1-\lambda) y \in M\} .
$$

If $E$ is proper and convex and $u \in \operatorname{ri}(\operatorname{dom}(E)), \partial E(u)$ is non-empty.
Sum rule - Let $E_{1}, E_{2}$ be convex functions such that ri $\left(\operatorname{dom}\left(E_{1}\right)\right) \cap \mathrm{ri}\left(\operatorname{dom}\left(E_{2}\right)\right) \neq \emptyset$, then it holds that

$$
\partial\left(E_{1}+E_{2}\right)(u)=\left\{p_{1}+p_{2} \mid p_{1} \in \partial E_{1}(u), p_{2} \in \partial E_{2}(u)\right\} .
$$

Chain rule - If $A \in \mathbb{R}^{m \times n}, E: \mathbb{R}^{m} \rightarrow \mathbb{R} \cup\{\infty\}$ is convex, and $\operatorname{ri}(\operatorname{dom}(E)) \cap \operatorname{range}(A) \neq \emptyset$, then it holds that

$$
\partial(E \circ A)(u)=\left\{A^{T} p \mid p \in \partial E(A u)\right\} .
$$

## Contractions

Question: When does the following fixed-point iteration converge?

$$
\begin{equation*}
u^{k+1}=G\left(u^{k}\right) \tag{fp}
\end{equation*}
$$

We call $G: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ a contraction if it is Lipschitz-continuous with constant $L<1$, i.e. if there exists a $L<1$ such that for all $u, v \in \mathbb{R}^{n}$

$$
\|G(u)-G(v)\|_{2} \leq L\|u-v\|_{2} .
$$

If $G$ is a contraction, it has a unique fixed-point $\hat{u}$ and ( fp ) converges linearly to $\hat{u}$.

## Averaged operators

An operator $H: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is non-expasive if it is Lipschitz-continuous with constant 1 , i.e. if for all $u, v \in \mathbb{R}^{n}$

$$
\|H(u)-H(v)\|_{2} \leq\|u-v\|_{2} .
$$

An operator $G: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is called averaged if there exists a non-expansive mapping $H: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ and a constant $\alpha \in(0,1)$ s.t.

$$
G=\alpha I+(1-\alpha) H
$$

If $G: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is averaged and has a fixed-point, then the iteration

$$
u^{k+1}=G\left(u^{k}\right)
$$

converges to a fixed point of $G$ for any starting point $u^{0} \in \mathbb{R}^{n}$.

## Averaged operators

An operator $G: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is called firmly nonexpansive, if for all $u, v \in \mathbb{R}^{n}$ it holds that

$$
\|G(u)-G(v)\|_{2}^{2} \leq\langle G(u)-G(v), u-v\rangle .
$$

An operator $G: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is firmly nonexpansive if and only if $G$ is averaged with $\alpha=\frac{1}{2}$.

Compositions of averaged operators are averaged.

## Gradient descent

Gradient descent iteration: $u^{k+1}=u^{k}-\tau \nabla E\left(u^{k}\right)$
$E$ is $L$-smooth if $E$ is differentiable and $\nabla E$ is $L$-Lipschitz continuous.
Baillon-Haddad Th.: A continuously differentiable convex function $E: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is L-smooth if and only if $\frac{1}{L} \nabla E$ is firmly nonexpansive.

Theorem: For $E$ convex and $L$-smooth, gradient descent with a fixed step-size $\tau \in(0,2 / L)$ converges to a solution of $\min _{u \in \mathbb{R}^{n}} E(u)$.

As $E$ is $L$-smooth, $\frac{1}{L} \nabla E=\frac{1}{2}(I+T)$ for some non-expansive operator $T$.

$$
G(u)=u-\tau L \frac{1}{L} \nabla E(u)=\left(1-\frac{L \tau}{2}\right) I+\frac{L \tau}{2}(-T)
$$

is averaged for $\tau \in(0,2 / L)$. Then $u^{k+1}=G\left(u^{k}\right)=u^{k}-\tau \nabla E\left(u^{k}\right)$ converges to a fixed-point of $G$ (a minimizer of $E$ as $\nabla E\left(u^{*}\right)=0$ ).

## Gradient projection

Consider the problem $\min _{u \in C} E(u)$ for $E, C$ convex and $E L$-smooth.

The gradient projection iteration is $u^{k+1}=\operatorname{proj}_{C}(\underbrace{u^{k}-\tau \nabla E\left(u^{k}\right)}_{G_{\tau}\left(u^{k}\right)})$.
We can sow that the projection onto a non-empty closed convex set is firmly nonexpansive $\Rightarrow \operatorname{proj}_{C}$ is averaged.
If $E$ is $L$-smooth and $\tau \in(0,2 / L)$, then $G_{\tau}$ is averaged and $\operatorname{proj}_{C}\left(G_{\tau}\right)$ is averaged because the composition of averaged operators is averaged. Then the gradient projection alg. converges to a minimizer of $E$ over $C$ as a fixed-point iteration $u^{k+1}=\operatorname{proj}_{C}\left(G_{\tau}\left(u^{k}\right)\right)$ of an averaged operator.

## Proximal Operator

The mapping $\operatorname{prox}_{E}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ defined as

$$
\operatorname{prox}_{E}(v):=\underset{u \in \mathbb{R}^{n}}{\operatorname{argmin}} E(u)+\frac{1}{2}\|u-v\|^{2}
$$

for a closed, proper, convex function $E: \mathbb{R}^{n} \rightarrow \mathbb{R} \cup\{\infty\}$ is called the proximal operator or proximal mapping of $E$.

The proximal operator prox ${ }_{E}$ for a closed, proper, convex function $E$ is firmly nonexpansive and therefore averaged with $\alpha=1 / 2$.

## Proximal gradient

Consider the problem $\min _{u \in \mathbb{R}^{n}} F(u)+G(u)$ for $F$ convex and $G$ convex and $L$ smooth. Then the iteration

$$
u^{k+1}=\operatorname{prox}_{\tau F}\left(u^{k}-\tau \nabla G\left(u^{k}\right)\right)
$$

is called the proximal gradient method.

Let $E(u)=F(u)+G(u)$ have a minimizer, and $\tau \in(0,2 / L)$, then the proximal gradient method converges to a minimizer of $E$.

The convergence rates of gradient descent, gradient projection, and proximal gradient are suboptimal. They are accelerated by extrapolation.

## Convex conjugation

The convex conjugate of a proper function $E: \mathbb{R}^{n} \rightarrow \mathbb{R} \cup\{\infty\}$ is

$$
E^{*}(p)=\sup _{u}\langle u, p\rangle-E(u)
$$

It is always convex and closed.
The Fenchel-Young inequality states that

$$
E(u)+E^{*}(p) \geq\langle u, p\rangle,
$$

and that equality holds if and only if $p \in \partial E(u)$.
For a proper, closed convex function $E$, its biconjugate $E^{* *}=E$.
For a proper, closed convex function $E, p \in \partial E(u) \Leftrightarrow u \in \partial E^{*}(p)$.

## Fenchel Duality

Let $E(u)=G(u)+F(K u)$ have a minimizer, and let $G$ and $F$ be closed and convex. If there is $u \in \operatorname{ri}(\operatorname{dom}(G))$ s.t. $K u \in \operatorname{ri}(\operatorname{dom}(F))$, then

$$
\begin{array}{rlr} 
& \min _{u} & G(u)+F(K u)
\end{array} \quad \text { Primal } \quad \text { Saddle point }
$$

We are therefore looking for a saddle point $(u, q)$ such that

$$
-K^{T} q \in \partial G(u), \quad K u \in \partial F^{*}(q)
$$

## PDHG

The primal-dual view motivates the definition of an iterative method to find

$$
-K^{T} q \in \partial G(u), \quad K u \in \partial F^{*}(q)
$$

The primal-dual hybrid gradient (PDHG) method computes

$$
\binom{0}{0} \in \underbrace{\left(\begin{array}{cc}
\partial G & K^{T} \\
-K & \partial F^{*}
\end{array}\right)}_{=: T}\binom{u^{k+1}}{p^{k+1}}+\underbrace{\left(\begin{array}{cc}
\frac{1}{\tau} I & -K^{T} \\
-K & \frac{1}{\sigma} I
\end{array}\right)}_{=: M}\binom{u^{k+1}-u^{k}}{p^{k+1}-p^{k}}
$$

or in the algorithmic-friendly form of (PDHG)

$$
\begin{align*}
p^{k+1} & =\operatorname{prox}_{\sigma F^{*}}\left(p^{k}+\sigma K\left(2 u^{k}-u^{k-1}\right)\right),  \tag{PDHG}\\
u^{k+1} & =\operatorname{prox}_{\tau G}\left(u^{k}-\tau K^{*} p^{k+1}\right)
\end{align*}
$$

## Convergence analysis

A set-valued operator $T$ is called monotone ( a generalization of firmly non-expansive) if $\langle p-q, u-v\rangle \geq 0 \quad \forall u, v, p \in T(u), q \in T(v)$.

The resolvent $(I+T)^{-1}$ of a maximally monotone operator is firmly non-expansive, i.e. averaged with $\alpha=1 / 2$.

Let $T$ be maximally monotone and let there exist a $z$ such that $0 \in T(z)$. Then the proximal point algorithm

$$
0 \in T\left(z^{k+1}\right)+z^{k+1}-z^{k}
$$

converges to a $\tilde{z}$ with $0 \in T(\tilde{z})$.

## Convergence of PDHG

$$
\binom{0}{0} \in \underbrace{\left(\begin{array}{cc}
\partial G & K^{T} \\
-K & \partial F^{*}
\end{array}\right)}_{=: T}\binom{u^{k+1}}{p^{k+1}}+\underbrace{\left(\begin{array}{cc}
\frac{1}{\tau} I & -K^{T} \\
-K & \frac{1}{\sigma} I
\end{array}\right)}_{=: M}\binom{u^{k+1}-u^{k}}{p^{k+1}-p^{k}}
$$

$T$ is maximally monotone, $M$ is positive definite for $\tau \sigma<\frac{1}{\|K\|_{S \infty}^{2}}$.
Let $M=M^{1 / 2} M^{1 / 2}$, then $M^{-1 / 2} T M^{-1 / 2}$ is maximally montone and the PDHG algorithm is a proximal point algorithm in $z=M^{1 / 2}(u ; p)$.

If saddle-point problem has a solution and $\tau \sigma<\|K\|_{S^{\infty}}^{-2}$, PDHG converges.

## PDHG

The variants of PDHG for functions $F^{*}$ or $G$ strongly convex converge faster.

Considering

$$
\binom{0}{0} \in\left(\begin{array}{cc}
\partial G & K^{T} \\
-K & \partial F^{*}
\end{array}\right)\binom{u^{k+1}}{p^{k+1}}+\left(\begin{array}{cc}
\frac{1}{\tau} I & -K^{T} \\
-K & \frac{1}{\sigma} I
\end{array}\right)\binom{u^{k+1}-u^{k}}{p^{k+1}-p^{k}} .
$$

we measure convergence, and define stopping criteria, in terms of the residuals

$$
\begin{aligned}
r_{p}^{k+1} & =\frac{1}{\sigma}\left(p^{k+1}-p^{k}\right)-K\left(u^{k+1}-u^{k}\right) \\
r_{d}^{k+1} & =\frac{1}{\tau}\left(u^{k+1}-u^{k}\right)-K^{T}\left(p^{k+1}-p^{k}\right)
\end{aligned}
$$

## Summary: Learning Problem

Given a set of examples $\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)$
each example $\xi=(x, y)$ is a pair of an input $x$ and a scalar output $y$. loss $\ell(\hat{y}, y)$ measures the cost of predicting $\hat{y}$ when the answer is $y$ family of functions $h(\cdot ; w)$ parametrized by a weight vector $w$.

We seek $h \in$ that minimizes the loss $f(\xi ; w)=\ell(h(x ; w), y)$.
Although we would like to average over the unknown distribution $P(x, y)$

$$
f(w)=R(w)=\mathbb{E}[\ell(h(x ; w), y)]=\int \ell(h(x ; w), y) \mathrm{d} P(x, y)
$$

we must settle for computing the average over the samples

$$
f(w)=R_{n}(w)=\frac{1}{n} \sum_{i=1}^{n} \ell\left(h\left(x_{i} ; w\right), y_{i}\right)
$$

Statistical learning theory (Vapnik and Chervonenkis, 1971) justifies minimizing $R_{n}$ instead of $R$ when is sufficiently restrictive.

## Stochastic Gradient Method

The objective function $F: \mathbb{R}^{d} \mapsto \mathbb{R}$ can be the expected or empirical risk:

$$
F(w)=\mathbb{E}[f(w, \xi)] \quad \text { or } \quad F(w)=\frac{1}{n} \sum_{i=1}^{n} f_{i}(w) .
$$

The analysis applies to both objectives, depending on how the stochastic gradient estimates are chosen.

Stochastic Gradient Method [0] Choose an initial iterate $w_{1} \mathrm{k}=1,2, \ldots$
Generate a realization of the random variable $\xi_{k}$ Compute a stochastic vector $g\left(w_{k}, \xi_{k}\right)$ Choose a stepsize $\alpha_{k}>0$ Set the new iterate as

$$
w_{k+1}=w_{k}-\alpha_{k} g\left(w_{k}, \xi_{k}\right)
$$

## Fundamental Lemmas

## Lemma

If $F$ is an $L$-smooth function, the iterates of SG satisfy:

$$
\mathbb{E}_{\xi_{k}}\left[F\left(w_{k+1}\right)\right]-F\left(w_{k}\right) \leq-\alpha_{k} \underbrace{\nabla F\left(w_{k} \mathbb{E}_{\xi_{k}}\left[g\left(w_{k}, \xi_{k}\right)\right]\right.}_{\begin{array}{c}
\text { expected directional derivative } \\
\text { of } F \text { along direction } g\left(w_{k}, \xi_{k}\right)
\end{array}}+\frac{\alpha_{k}^{2} L}{2} \underbrace{\mathbb{E}_{\xi_{k}}\left[\left\|g\left(w_{k}, \xi_{k}\right)\right\|^{2}\right]}_{\text {second moment } g\left(w_{k}, \xi_{k}\right)}
$$

## Lemma

If $F$ is $L$-smooth and there are $M \leq 0$ and $M_{G} \geq \mu^{2} \geq 0$ such that

$$
\mathbb{E}_{\xi_{k}}\left[\left\|g\left(w_{k}, \xi_{k}\right)\right\|^{2}\right] \leq M+M_{G}\left\|\nabla F\left(w_{k}\right)\right\|^{2},
$$

then the SG iterates satisfy

$$
\mathbb{E}_{\xi_{k}}\left[F\left(w_{k+1}\right)\right]-F\left(w_{k}\right) \leq-\underbrace{\left(\mu-\frac{1}{2} \alpha_{k} L M_{G}\right) \alpha_{k}\left\|\nabla F\left(w_{k}\right)\right\|^{2}+\frac{1}{2} \alpha_{k}^{2} L M}_{\text {deterministic }} .
$$

## Convergence of SG

## Theorem

If $F$ is $L$-smooth and $c$-strongly convex and satisfies Assumption 2, then the $S G$ method run with a positive stepsize $\alpha \leq \frac{\mu}{L M_{G}}$ satisfies

$$
\mathbb{E}\left[F\left(w_{k}\right)-F^{*}\right] \leq \frac{\alpha L M}{2 c \mu}+(1-\alpha c \mu)^{k-1}\left(F\left(w_{1}\right)-F^{*}-\frac{\alpha L M}{2 c \mu}\right)
$$

## Theorem

If $F$ is $L$-smooth and $c$-strongly convex and satisfies Assumption 2, then SG method with stepsizes $\alpha_{k}=\frac{\beta}{\gamma+k}$ for some $\beta>\frac{1}{c \mu}, \gamma>0$ such that $\alpha_{1} \leq \frac{\mu}{L M_{G}}$ satisfies
$\mathbb{E}\left[F\left(w_{k}\right)-F^{*}\right] \leq \frac{\eta}{\gamma+k} \quad \eta=\max \left\{\frac{\beta^{2} L M}{2(\beta c \mu-1)},(\gamma+1)\left(F\left(w_{1}\right)-F^{*}\right)\right\}$.

## Noise-Reduction Methods

Noise-Reduction Methods: instead of decreasing the learning rate to converge to the optimum, reduce variance of the stochastic gradients.
They achieve a linear convergence rate at a higher per-iteration cost.

Other methods come with few guarantees but work well in practice:
Gradient Methods with Momentum
Accelerated Gradient Method
Adaptive Methods: adagrad, adadelta, adam

## Primal-Dual Algorithms

Make sure the updates decouple, are easy, and $M \succeq 0$
PDHG, overrelaxation on primal

$$
0 \in\left[\begin{array}{cc}
\partial G & K^{T} \\
-K & \partial F^{*}
\end{array}\right]\left[\begin{array}{c}
u^{k+1} \\
p^{k+1}
\end{array}\right]+\left[\begin{array}{cc}
\frac{1}{\tau} I & -K^{T} \\
-K & \frac{1}{\sigma} I
\end{array}\right]\left[\begin{array}{c}
u^{k+1}-u^{k} \\
p^{k+1}-p^{k}
\end{array}\right] .
$$

PDHG, overrelaxation on dual

$$
0 \in\left[\begin{array}{cc}
\partial G & K^{T} \\
-K & \partial F^{*}
\end{array}\right]\left[\begin{array}{l}
u^{k+1} \\
p^{k+1}
\end{array}\right]+\left[\begin{array}{cc}
\frac{1}{\tau} I & K^{T} \\
K & \frac{1}{\sigma} I
\end{array}\right]\left[\begin{array}{c}
u^{k+1}-u^{k} \\
p^{k+1}-p^{k}
\end{array}\right] .
$$

Primal ADMM

$$
0 \in\left[\begin{array}{cc}
\partial G & K^{T} \\
-K & \partial F^{*}
\end{array}\right]\left[\begin{array}{c}
u^{k+1} \\
p^{k+1}
\end{array}\right]+\left[\begin{array}{cc}
\lambda K^{T} K & K^{T} \\
K & \frac{1}{\lambda} I
\end{array}\right]\left[\begin{array}{c}
u^{k+1}-u^{k} \\
p^{k+1}-p^{k}
\end{array}\right] .
$$

Corresponding dual ADMM

$$
0 \in\left[\begin{array}{cc}
\partial G & K^{T} \\
-K & \partial F^{*}
\end{array}\right]\left[\begin{array}{c}
u^{k+1} \\
p^{k+1}
\end{array}\right]+\left[\begin{array}{cc}
\frac{1}{\lambda} I & -K^{T} \\
-K & \lambda K K^{T}
\end{array}\right]\left[\begin{array}{c}
u^{k+1}-u^{k} \\
p^{k+1}-p^{k}
\end{array}\right] .
$$

