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Convexity

Convexity of E : Rn → R ∪ {∞}: For all u, v ∈ Rn and all θ ∈ [0, 1] it

holds that

E(θu+ (1− θ)v) ≤ θE(u) + (1− θ)E(v) (c)

We call E strictly convex, if the inequality (c) is strict for all θ ∈ (0, 1),

and v 6= u.

We call E m-strongly convex if G(u) = E(u)− m
2 ‖u‖

2 is convex.
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Existence+uniqueness

The domain of E is

dom(E) := {u ∈ Rn | E(u) <∞}.

We call E proper if dom(E) 6= ∅.
The epigraph of E is defined as

epi(E) := {(u, α) | E(u) ≤ α}.

A function is called closed if its epigraph is a closed set.

If E is closed and there exists a nonempty and bounded sublevelset

{u ∈ Rn | E(u) ≤ α},

then E has a minimizer.
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The subdifferential: Optimality Conditions

The subdifferential of a convex function E is

∂E(u) = {p ∈ Rn | E(v)− E(u)− 〈p, v − u〉 ≥ 0 ∀v ∈ Rn}

If E is differentiable at u then

∂E(u) = {∇E(u)}.

For convex functions, any local minimizer is a global minimizer. The

optimality condition is

û ∈ argmin
u
E(u)⇔ 0 ∈ ∂E(û)

If E has a minimizer and is strictly convex, the minimizer of E is unique.
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The subdifferential: Sum and Chain Rules

The relative interior of a convex set M is defined as

ri(M) := {x ∈M | ∀y ∈M, ∃λ > 1, s.t. λx+ (1− λ)y ∈M}.

If E is proper and convex and u ∈ ri(dom(E)), ∂E(u) is non-empty.

Sum rule – Let E1, E2 be convex functions such that

ri(dom(E1)) ∩ ri(dom(E2)) 6= ∅, then it holds that

∂(E1 + E2)(u) = {p1 + p2 | p1 ∈ ∂E1(u), p2 ∈ ∂E2(u)}.

Chain rule – If A ∈ Rm×n, E : Rm → R ∪ {∞} is convex, and

ri(dom(E)) ∩ range(A) 6= ∅, then it holds that

∂(E ◦A)(u) = {AT p | p ∈ ∂E(Au)}.
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Contractions

Question: When does the following fixed-point iteration converge?

uk+1 = G(uk) (fp)

We call G : Rn → Rn a contraction if it is Lipschitz-continuous with

constant L < 1, i.e. if there exists a L < 1 such that for all u, v ∈ Rn

‖G(u)−G(v)‖2 ≤ L‖u− v‖2.

If G is a contraction, it has a unique fixed-point û and (fp) converges

linearly to û.

Convergence of fixed-point iterations 6



Averaged operators

An operator H : Rn → Rn is non-expasive if it is Lipschitz-continuous

with constant 1, i.e. if for all u, v ∈ Rn

‖H(u)−H(v)‖2 ≤ ‖u− v‖2.

An operator G : Rn → Rn is called averaged if there exists a

non-expansive mapping H : Rn → Rn and a constant α ∈ (0, 1) s.t.

G = αI + (1− α)H.

If G : Rn → Rn is averaged and has a fixed-point, then the iteration

uk+1 = G(uk)

converges to a fixed point of G for any starting point u0 ∈ Rn.
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Averaged operators

An operator G : Rn → Rn is called firmly nonexpansive, if for all

u, v ∈ Rn it holds that

‖G(u)−G(v)‖22 ≤ 〈G(u)−G(v), u− v〉.

An operator G : Rn → Rn is firmly nonexpansive if and only if G is

averaged with α = 1
2 .

Compositions of averaged operators are averaged.

Convergence of fixed-point iterations 8



Gradient descent

Gradient descent iteration: uk+1 = uk − τ∇E(uk)

E is L-smooth if E is differentiable and ∇E is L-Lipschitz continuous.

Baillon-Haddad Th.: A continuously differentiable convex function

E : Rn → R is L-smooth if and only if 1
L∇E is firmly nonexpansive.

Theorem: For E convex and L-smooth, gradient descent with a fixed

step-size τ ∈ (0, 2/L) converges to a solution of minu∈Rn E(u).

As E is L-smooth, 1
L
∇E = 1

2
(I + T ) for some non-expansive operator T .

G(u) = u− τL 1

L
∇E(u) =

(
1− Lτ

2

)
I +

Lτ

2
(−T )

is averaged for τ ∈ (0, 2/L). Then uk+1 = G(uk) = uk − τ∇E(uk) converges

to a fixed-point of G (a minimizer of E as ∇E(u∗) = 0).
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Gradient projection

Consider the problem min
u∈C

E(u) for E, C convex and E L-smooth.

The gradient projection iteration is uk+1 = projC(u
k − τ∇E(uk)︸ ︷︷ ︸

Gτ (uk)

).

We can sow that the projection onto a non-empty closed convex set is

firmly nonexpansive ⇒ projC is averaged.

If E is L-smooth and τ ∈ (0, 2/L), then Gτ is averaged and projC(Gτ )

is averaged because the composition of averaged operators is averaged.

Then the gradient projection alg. converges to a minimizer of E over C

as a fixed-point iteration uk+1 = projC(Gτ (u
k)) of an averaged operator.
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Proximal Operator

The mapping proxE : Rn → Rn defined as

proxE(v) := argmin
u∈Rn

E(u) +
1

2
‖u− v‖2

for a closed, proper, convex function E : Rn → R ∪ {∞} is called the

proximal operator or proximal mapping of E.

The proximal operator proxE for a closed, proper, convex function E is

firmly nonexpansive and therefore averaged with α = 1/2.
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Proximal gradient

Consider the problem minu∈Rn F (u) +G(u) for F convex and G convex

and L smooth. Then the iteration

uk+1 = proxτF (u
k − τ∇G(uk))

is called the proximal gradient method.

Let E(u) = F (u) +G(u) have a minimizer, and τ ∈ (0, 2/L), then the

proximal gradient method converges to a minimizer of E.

The convergence rates of gradient descent, gradient projection, and

proximal gradient are suboptimal. They are accelerated by extrapolation.
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Convex conjugation

The convex conjugate of a proper function E : Rn → R ∪ {∞} is

E∗(p) = sup
u
〈u, p〉 − E(u).

It is always convex and closed.

The Fenchel-Young inequality states that

E(u) + E∗(p) ≥ 〈u, p〉,

and that equality holds if and only if p ∈ ∂E(u).

For a proper, closed convex function E, its biconjugate E∗∗ = E.

For a proper, closed convex function E, p ∈ ∂E(u)⇔ u ∈ ∂E∗(p).
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Fenchel Duality

Let E(u) = G(u) + F (Ku) have a minimizer, and let G and F be closed

and convex. If there is u ∈ ri(dom(G)) s.t. Ku ∈ ri(dom(F )), then

minu G(u) + F (Ku) Primal

= minumaxq G(u) + 〈q,Ku〉 − F ∗(q)
Saddle point

= maxqminu G(u) + 〈q,Ku〉 − F ∗(q)

= maxq −G∗(−K∗q)− F ∗(q) Dual

We are therefore looking for a saddle point (u, q) such that

−KT q ∈ ∂G(u), Ku ∈ ∂F ∗(q).
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PDHG

The primal-dual view motivates the definition of an iterative method to

find

−KT q ∈ ∂G(u), Ku ∈ ∂F ∗(q).

The primal-dual hybrid gradient (PDHG) method computes(
0

0

)
∈

(
∂G KT

−K ∂F ∗

)
︸ ︷︷ ︸

=:T

(
uk+1

pk+1

)
+

(
1
τ I −KT

−K 1
σ I

)
︸ ︷︷ ︸

=:M

(
uk+1 − uk

pk+1 − pk

)
.

or in the algorithmic-friendly form of (PDHG)

pk+1 = proxσF∗(p
k + σK(2uk − uk−1)),

uk+1 = proxτG(u
k − τK∗pk+1),

(PDHG)
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Convergence analysis

A set-valued operator T is called monotone ( a generalization of firmly

non-expansive) if 〈p− q, u− v〉 ≥ 0 ∀u, v, p ∈ T (u), q ∈ T (v).

The resolvent (I + T )−1 of a maximally monotone operator is firmly

non-expansive, i.e. averaged with α = 1/2.

Let T be maximally monotone and let there exist a z such that 0 ∈ T (z).
Then the proximal point algorithm

0 ∈ T (zk+1) + zk+1 − zk

converges to a z̃ with 0 ∈ T (z̃).
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Convergence of PDHG

(
0

0

)
∈

(
∂G KT

−K ∂F ∗

)
︸ ︷︷ ︸

=:T

(
uk+1

pk+1

)
+

(
1
τ I −KT

−K 1
σ I

)
︸ ︷︷ ︸

=:M

(
uk+1 − uk

pk+1 − pk

)
.

T is maximally monotone, M is positive definite for τσ < 1
‖K‖2

S∞
.

Let M =M1/2M1/2, then M−1/2TM−1/2 is maximally montone and

the PDHG algorithm is a proximal point algorithm in z =M1/2(u; p).

If saddle-point problem has a solution and τσ<‖K‖−2S∞ , PDHG converges.
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PDHG

The variants of PDHG for functions F ∗ or G strongly convex

converge faster.

Considering(
0

0

)
∈

(
∂G KT

−K ∂F ∗

)(
uk+1

pk+1

)
+

(
1
τ I −KT

−K 1
σ I

)(
uk+1 − uk

pk+1 − pk

)
.

we measure convergence, and define stopping criteria, in terms of the

residuals

rk+1
p =

1

σ
(pk+1 − pk)−K(uk+1 − uk)

rk+1
d =

1

τ
(uk+1 − uk)−KT (pk+1 − pk)
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Summary: Learning Problem

Given a set of examples (x1, y1), . . . , (xn, yn)

each example ξ = (x, y) is a pair of an input x and a scalar output y.

loss `(ŷ, y) measures the cost of predicting ŷ when the answer is y

family of functions h(·;w) parametrized by a weight vector w.

We seek h ∈ that minimizes the loss f(ξ;w) = `(h(x;w), y).

Although we would like to average over the unknown distribution P (x, y)

f(w) = R(w) = E[`(h(x;w), y)] =
∫
`(h(x;w), y)dP (x, y)

we must settle for computing the average over the samples

f(w) = Rn(w) =
1

n

n∑
i=1

`(h(xi;w), yi).

Statistical learning theory (Vapnik and Chervonenkis, 1971) justifies

minimizing Rn instead of R when is sufficiently restrictive.
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Stochastic Gradient Method

The objective function F : Rd 7→ R can be the expected or empirical risk:

F (w) = E[f(w, ξ)] or F (w) =
1

n

n∑
i=1

fi(w).

The analysis applies to both objectives, depending on how the stochastic

gradient estimates are chosen.

Stochastic Gradient Method [0] Choose an initial iterate w1 k=1,2,. . .

Generate a realization of the random variable ξk Compute a stochastic

vector g(wk, ξk) Choose a stepsize αk > 0 Set the new iterate as

wk+1 = wk − αkg(wk, ξk)
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Fundamental Lemmas

Lemma
If F is an L-smooth function, the iterates of SG satisfy:

Eξk [F (wk+1)]− F (wk) ≤ −αk∇F (wk)
TEξk [g(wk, ξk)]︸ ︷︷ ︸

expected directional derivative
of F along direction g(wk, ξk)

+
α2
kL

2
Eξk [‖g(wk, ξk)‖

2]︸ ︷︷ ︸
second moment g(wk, ξk)

Lemma
If F is L-smooth and there are M ≤ 0 and MG ≥ µ2 ≥ 0 such that

Eξk [‖g(wk, ξk)‖2] ≤M +MG‖∇F (wk)‖2,

then the SG iterates satisfy

Eξk [F (wk+1)]− F (wk) ≤ − (µ− 1

2
αkLMG)αk‖∇F (wk)‖2 +

1

2
α2
kLM︸ ︷︷ ︸

deterministic

.
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Convergence of SG

Theorem
If F is L-smooth and c-strongly convex and satisfies Assumption 2, then

the SG method run with a positive stepsize α ≤ µ
LMG

satisfies

E[F (wk)− F ∗] ≤
αLM

2cµ
+ (1− αcµ)k−1

(
F (w1)− F ∗ −

αLM

2cµ

)
,

Theorem
If F is L-smooth and c-strongly convex and satisfies Assumption 2, then

SG method with stepsizes αk = β
γ+k for some β > 1

cµ , γ > 0 such that

α1 ≤ µ
LMG

satisfies

E[F (wk)− F ∗] ≤
η

γ + k
η = max

{
β2LM

2(βcµ− 1)
, (γ + 1)(F (w1)− F ∗)

}
.
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Noise-Reduction Methods

Noise-Reduction Methods: instead of decreasing the learning rate to

converge to the optimum, reduce variance of the stochastic gradients.

They achieve a linear convergence rate at a higher per-iteration cost.

Other methods come with few guarantees but work well in practice:

Gradient Methods with Momentum

Accelerated Gradient Method

Adaptive Methods: adagrad, adadelta, adam
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Primal-Dual Algorithms

Make sure the updates decouple, are easy, and M � 0

PDHG, overrelaxation on primal

0 ∈

[
∂G KT

−K ∂F ∗

][
uk+1

pk+1

]
+

[
1
τ I −KT

−K 1
σ I

][
uk+1 − uk

pk+1 − pk

]
.

PDHG, overrelaxation on dual

0 ∈

[
∂G KT

−K ∂F ∗

][
uk+1

pk+1

]
+

[
1
τ I KT

K 1
σ I

][
uk+1 − uk

pk+1 − pk

]
.

Primal ADMM

0 ∈

[
∂G KT

−K ∂F ∗

][
uk+1

pk+1

]
+

[
λKTK KT

K 1
λI

][
uk+1 − uk

pk+1 − pk

]
.

Corresponding dual ADMM

0 ∈

[
∂G KT

−K ∂F ∗

][
uk+1

pk+1

]
+

[
1
λI −KT

−K λKKT

][
uk+1 − uk

pk+1 − pk

]
.
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