
Chapter 1

Why Convex Optimization

1.1 Introduction

Optimization problems arise naturally in many computer vision and machine learning applications that

estimate pixel values, motions, shapes, or model parameters from input images, videos, range sensors, or

training data. By formalizing the problem into a concise mathematical form, we obtain an optimization

problem whose solution are the model parameters that best fit the observed data and our prior knowledge

of the physical world. The next step, finding a solution to the mathematical model, is far from trivial.

The bitter truth is that most optimization problems are unsolvable. Among the solvable ones, convex

problems form a large subset that builds on solid mathematical properties and can be solved efficiently

with algorithms that exploit these properties. Most commercial packages for optimization, however, use

minimal assumptions on the structure of the optimization in order to fit a large class of problems, albeit in

a poor manner, and lead to poor optimization strategies. The goal of this course is to present techniques

that exploit the properties of convex optimization problems to develop efficient algorithms for a large set

of computer vision and machine learning problems.

In many of these applications the process of creating a model takes a considerable amount of time

and effort. Therefore, it is important to understand the properties of the model and the computational

consequences of each decision. Very often we have to choose between a good model, which we cannot

solve and a bad model, which can be solved efficiently. To distinguish between the two, it is necessary to

be aware of some theory that explains what we can and what we cannot do with optimization problems,

and how convexity plays a key role on the solvability of a problem.

This first chapter is a summary of Chapter 1 of Introductory Lectures on Convex Optimization, by

Nesterov.

1.2 Limitations in General Optimization

Let us start by describing our optimization problem. Let u ∈ Rn be an n-dimensional real vector, C ⊂ Rn

be a subset of Rn, and E be a real-valued functions of u. We study different variants of the following

general minimization problem:

û ∈ arg min
u∈C

E(u) (1.1)

The function E : Rn → R is the objective function, while the set C is the feasible set. We consider

a minimization problem by convention, but we can also consider a maximization problem with −E as

objective function.
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There is a natural classification of the types of minimization problems that we will study: uncon-

strained problems where C = Rn, smooth problems where E is differentiable, and non-smooth problems

where E is not differentiable. We also distinguish two different types of solutions to the minimization

problem.

Definition Global Minimum.u? is a global solution of (1.1) if E(u?) ≥ E(u) for all u ∈ C.

Definition Local Minimum. u? is a local solution of (1.1) if there exists a r > 0 such that

E(u?) ≥ E(u) ∀u ∈ C, ‖u− u?‖ < r.

Local minima are easier to find that global ones. For instance, given an estimate of the the minimizer

u0, we can create a sequence {uk} that decreases the value of the energy at each step to find the local

minimum. Formally, we say that these type of optimization methods create a relaxation sequence {E(uk)}
that satisfies E(uk+1) ≤ E(uk) and always improves the initial value of the objective function. If E is

bounded below on Rn, then the sequence {E(uk)} converges to a local minimum. Let us formalize what

we mean by convergence.

Definition We say that a sequence {ak} ⊂ Rn converges to â ∈ Rn if for all ε > 0 there exists an k0 ∈ N
such that

‖ak − â‖ < ε ∀k ≥ k0.

To implement the idea of relaxation we use another fundamental principle of numerical analysis, the

approximation. The approximation replaces the original objective function E by a simplified objective

function that is close to the original. When the function is differentiable, we usually resort to local

approximations of the objective function based on its Taylor expansion at the current estimate to create

linear and quadratic approximations of the objective.

Let E(u) be differentiable at u0, then for u ∈ Rn, we have

E(u) = E(u0) + 〈∇E(u0), u− u0〉+ o(‖u− u0‖) where lim
r→0

o(r)

r
= 0.

Function E(u;u0) = E(u0) + 〈∇E(u0), u − u0〉 is a linear approximation of E in a neighborhood of u0.

Given an initial estimate of the minimizer u0, we can then use this linear approximation to reduce the

value of E(u) in a neighborhood of u0. In particular we can decide to iteratively step in the direction of

maximum descent as follows:

u1 = u0 − τ∇E(u0)

u2 = u1 − τ∇E(u1)

· · ·

uk+1 = uk − τ∇E(uk).

This gives us a very simple algorithm know as gradient descent. We will see in this course that under

certain conditions, the algorithm creates a relaxation sequence that decreases the value of the objective

function and converges to a point û ∈ Rn. This a point then satisfies û = û − τ∇E(û) ⇒ ∇E(û) = 0.

This is a necessary condition for optimality, as the next theorem shows.

Theorem 1. First-order Optimality Condition. Let u? be a local minimum of differentiable function

E(u). Then ∇E(u?) = 0.

Proof. Since u? is a local minimum of E(u), then there exists r > 0 such that for all v with ‖v−u?‖ ≤ r,
we have E(v) ≥ E(u?). Since E is differentiable, this implies that

E(v) = E(u?) + 〈∇E(u?), v − u?〉+ o(‖v − u?‖) ≥ E(u?).

Thus, for all s we have 〈∇E(u?), s〉 ≥ 0. If we consider the directions s and −s, we get ∇E(u?) = 0.
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Note that we have proved only a necessary condition of a local minimum. The points satisfying this

condition are called the stationary points of function. In order to see that such points are not always

the local minima, it is enough to look at function E(u) = u3. The optimality condition E′(u) = 3u2 = 0

suggests that 0 should be a local minimum, even though the function is decreasing for any u < 0 and can

thus not have a minimum at 0. The point 0 is in fact a stationary point, not a maximum or minimum.

To discern between local minima and stationary points of a function, let us introduce the second-order

approximation. Let function E(u) be twice differentiable with Hessian ∇2E(u) at u. Then

E(v) = E(u) + 〈∇E(u), v − u〉+
1

2
〈∇2E(u)(v − u), v − u〉+ o(‖v − u‖2).

The function E(v;u) = E(u)+〈∇E(u), v−u〉+ 1
2 〈∇

2E(u)(v−u), v−u〉 is the quadratic (or second-order)

approximation of function E at u. Note that the Hessian is a symmetric matrix that can be seen as a

derivative of the vector function ∇E. As a result, using a linear approximation to each component of

∇E, we have

∇E(v) = ∇E(u) +∇2E(u)(v − u) + o(‖v − u‖).

Using the second-order approximation, we can write down the second- order optimality conditions.

Theorem 2. Second-order Pptimality Condition Let u? be a local minimum of twice differentiahte

function E(u). Then ∇E(u?) = 0 and ∇2E(u?) is symmetric and positive semi-definite, that we denote

by ∇2E(u?) � 0.

Proof. Since u? is a local minimum of function E, there exists r > 0 such that

E(u) ≥ E(u?) ∀u with ‖u− u?‖ < r.

The first order optimality condition gives us ∇E(u?) = 0 and, as a result

E(u) = E(u?) + 〈∇2E(u?)(v − u?), v − u?〉+ o(‖y − u?‖2) ≥ E(u?).

Thus, 〈∇2E(u?)(v−u?), v−u?〉 ≥ 0. Letting s = v−u we have 〈∇2E(u?)s, s〉 ≥ 0, which implies positive

semi-definiteness.

This second-order characteristic of a local minimum is also sufficient.

Theorem 3. Let function E(u) be twice differentiable on Rn and let u? satisfy ∇E(u?) = 0 and

∇2E(u?) � 0. Then u? is a strict local minimum of E.

Proof. In a small neighborhood of u?, E(u) can be represented as

E(u) = E(u?) + 〈∇2E(u?)(u− u?), u− u?〉+ o(‖u− u?‖2).

Since limr→0
o(r)
r = 0, there exists a value r̄ such that for all r ∈ [0, r̄] we have

|o(r)| ≤ r

4
λ1,

where λ1 > 0 is the smallest eigenvalue of matrix ∇2E(u?). As ∇2E(u?) is symmetric and positive

definite, it has positive eigenvalues λ1, λ2, . . . , λn > 0 and orthogonal eigenvectors q1, q2, . . . qn, such that

∇2E(u?) =
∑

1≤i≤n λiq
T
i qi and ‖qTi v‖ = ‖v‖ for all v ∈ Rn. As a result,

E(u) ≥ E(u?) +
λ1

2
‖u− u?‖2 + o(‖u− u?‖2) ≥ E(u?) +

λ1

4
‖u− u?‖2 ≥ E(u?). (1.2)
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For general optimization problems, we thus require second-order differentiablity to formulate necessary

and sufficient optimality conditions. The optima described by these conditions is, moreover, only local.

This is quite disappointing because most applications in computer vision and machine learning have

objective functions that are not differentiable, where these general optimality conditions are meaningless.

Even in the rare cases where second-order derivatives exists, computing the Hessian is not feasible because

the size of the problem is too large. For these reasons, we resort to the field of convex optimization. Convex

optimization is a fairyland where the objective function does not need to be differentiable, optimality

conditions are not only necessary but sufficient, and the algorithms scale well with the size of the problem.



Chapter 2

Convex Analysis

2.1 Convex Optimization

We start this section with the unconstrained minimization problem

min
u∈Rn

E(u). (2.1)

In the general situation we cannot do too much: even when the function is smooth, the gradient method

converges only to a stationary point of function E and second-order differentiablity is necessary to derive

optimality conditions for a local minimum that are necessary and sufficient. To make the problem

tractable we introduce a key assumption on the kind of functions E that we minimize. In particular,

we call for the following property: for any E differentiable, the first-order optimality condition should

necessary and sufficient for a point to be a global solution of (2.1). Convex functions come with this

guarantee.

Definition A function E : Rn → R is convex if and only if for any u, v ∈ Rn and θ ∈ [0, 1]

E(θu+ (1− θ)v) ≤ θE(u) + (1− θ)E(v).

E is strictly convex if the inequality is strict for all θ ∈ (0, 1), v 6= u.

The definition of convex functions implicitly assumes that it is possible to evaluate the function at

any point of the segment

[u, v] = {z = θu+ (1− θ)v : 0 ≤ θ ≤ 1}.

As a result, it is natural to consider a set that contains the whole segment between any two points in the

set. Such sets are called convex.

Definition Convex Sets. The set C is convex if for any u, v ∈ C and θ ∈ [0, 1], θu+ (1− θ)v ∈ C.

We can then include this notion in the definition of convex functions with restricted domain.

Definition The domain of a function E : Rn → R is the set

dom(E) = {u ∈ Rn : E(u) <∞}

We can now extend the definition of convexity to functions.

Definition Convex Function. The function E : Rn → R = R ∪ {∞} is convex if

5
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• its domain dom(E) is a convex set.

• For all u, v ∈ dom(E) and all θ ∈ [0, 1] it holds that

E(θu+ (1− θ)v) ≤ θE(u) + (1− θ)E(v).

E is strictly convex if the inequality is strict for all θ ∈ (0, 1), v 6= u.

In the following we assume that the domain of E is not empty, that is, the function E is proper.

Definition Function E : Rn → R is proper if its domain is not empty.

This course will investigate convex minimization problems, they are characterized by the form

û ∈ arg min
u∈C

E(u), (2.2)

where C is a convex set and E is a convex function. To write such a problem in our familiar unconstrained

optimization form, we we define the extended real-valued function Ẽ by introducing the constraint

u ∈ C into the domain of the original energy function E:

Ẽ :Rn → R := R ∪ {∞} Ẽ(u) =

{
E(u) if u ∈ C,
∞ else.

We can then re-write (2.2) as

û ∈ arg min
u∈Rn

Ẽ(u).

2.2 Convex Sets

We have already seen some convex sets as a result of convex functions

Lemma 4. If E is a convex function, then for any β ∈ R, its level set {u : E(u) ≤ β} is either convex

or empty.

Proof. Let u, v ∈ dom(E) with E(u) ≤ β and E(v) ≤ β, by convexity of E we have θu+(1−θ)v ∈ dom(E)

and

E(θu+ (1− θ)v) ≤ θE(u) + (1− θ)E(v) ≤ θβ + (1− θ)β = β.

Lemma 5. Let E be a convex function, then its epigraph epi(E) = {(u, β) : E(u) ≤ β} is a convex

set.

Proof. Let (u, α), (v, β) ∈ epi(E), then u, v ∈ dom(E) with E(u) ≤ α and E(v) ≤ β, by convexity of E

we have θu+ (1− θ)v ∈ dom(E) and θ(u, α) + (1− θ)(v, β) ∈ epi(E) because

E(θu+ (1− θ)v) ≤ θE(u) + (1− θ)E(v) ≤ θα+ (1− θ)β.

To determine if a set is convex, a few properties are useful.

Lemma 6. Let C ⊂ Rn, D ⊂ Rm be convex sets and A : Rn → Rm be a linear operator, then the

following sets are convex



2.3. CONVEX FUNCTIONS 7

• Intersection C ∩D.

• Sum C +D = {u = x+ y : x ∈ C, y ∈ D} if n = m.

• Affine image A (C) = {u ∈ Rm : u = A (x), x ∈ C}

• Inverse affine image A −1(D) = {v ∈ Rn : A (v) ∈ D}

Proof. Left as exercise

As a result of the previous lemma, the following sets are convex

• Half-space {u ∈ Rn : 〈a, u〉 ≤ β} is convex since linear functions are convex.

• Polytope {u ∈ Rn : 〈ai, u〉 ≤ bi} is convex as an intersection of convex sets.

• Ellipsoid {u ∈ Rn : 〈Au, u〉 ≤ 1 with A � 0} because the function 〈Au, u〉 is a convex function.

2.3 Convex Functions

In order to determine if a function is convex, it is useful to know some equivalent definitions of convexity.

Theorem 7. Convexity and Epigraphs. A proper function E : Rn → R is convex if and only if its

epigraph is convex.

Proof. We have already seen one direction, the other is an exercise.

Lemma 8. Jensen’s Inequality. For any convex function E, u1, . . . , um ∈ dom(E) and coefficients

θ1, . . . , θm ≥ 0 such that
∑m
i=1 θiui = 1 it holds

E(

m∑
i=1

θiui) ≤
m∑
i=1

θiE(ui)

.

Proof. By induction on m. The case m = 2 is a result of the definition and the general an exercise.

Corollary 9. For any u a convex combination of u1, . . . , um ∈ dom(E), E(u) ≤ max
1≤i≤m

E(ui).

Corollary 10. Let ∆ = Conv{u1, . . . , um} be the convex hull of u1, . . . , um, then

max
u∈∆

E(u) = max
1≤i≤m

E(ui).

Lemma 11. Function E : C → R is convex if and only if C is convex and for all u, v ∈ C, β ≥ 0 such

that u+ β(u− v) ∈ C it holds that

E(u+ β(u− v)) ≥ E(u) + β(E(u)− E(v)).

Proof. Let E be convex, we first prove the alternative definition. Given β > 0 define θ = β
β+1 ∈ (0, 1]

and x = u+ β(u− v) such that

u =
1

1 + β
(x+ βv) = (1− θ)x+ θv

by convexity of E,

E(u) ≤ (1− θ)E(x) + θE(v) =
1

1 + β
E(u+ β(u− v)) +

β

1 + β
E(v)

(1 + β)E(u)− βE(v) ≤ E(u+ β(u− v))
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Let us now prove that this alternative definition implies convexity. Given any u, v ∈ dom(E), θ ∈ (0, 1],

define β = 1−θ
θ and x = θu+ (1− θ)v such that

u =
1

θ
(x− (1− θ)v) = x+ β(x− v)

the inequality reads

E(u) = E(x+ β(x− v)) ≥ E(x) + β[E(x)− E(v)]

E(u) ≥ (1 + β)E(x)− βE(v) =
1

θ
E(x)− 1− θ

θ
E(v)

θE(u) + (1− θ)E(v) ≥ E(θu+ (1− θ)v)

Theorem 12. Monotonicity of the gradient Let E : Rn → R be proper and continuously differen-

tiable, then E is convex if and only if for any u, v ∈ dom(E)

E(v) ≥ E(u) + 〈∇E(u), v − u〉.

Proof. Given u, v ∈ dom(E), and θ ∈ [0, 1], let uθ = θu+ (1− θ)v. If E is continuously differentiable and

satisfies the theorem’s inequality, we have

E(uθ) ≥ E(v) + 〈∇E(uθ), v − uθ〉 = E(v) + θ〈∇E(uθ), v − u〉

E(uθ) ≥ E(u) + 〈∇E(uθ), u− uθ〉 = E(u)− (1− θ)〈∇E(uθ), v − u〉.

Multiplying the first inequality by 1 − θ, the second by θ, and adding the results, we get the inequality

that defines a convex function E(θu+ (1− θ)v) ≤ θE(u) + (1− θ)E(v).

We now prove that a convex and continuously differentiable function satisfies the theorem’s inequality.

Given u, v ∈ dom(E), as E is convex for any θ ∈ [0, 1]

E(v) ≥ 1

1− θ
[E(uθ)− θE(u)] = E(u) +

1

1− θ
[E(uθ)− E(u)] = E(u) +

1

1− θ
[E(θu+ (1− θ)v)− θE(u)].

(2.3)

As E is differentiable, the limit when θ tends to 1 exists and we get E(v) ≥ E(u) + 〈∇E(u), v − u〉.

2.3.1 Necessary and Sufficient Optimality Conditions

Theorem 13. Let E : Rn → R be convex. Any local minimum of E is global.

Proof. Let u? be a global minimum of E and ū a local minimum that is not global, that is, E(u?) < E(ū).

By definition of local minimum, there exists an ε > 0 such that E(v) ≥ E(ū) for any v ∈ dom(E) with

‖ū− v‖ < ε. As u?, ū ∈ dom(E) convex, θū+ (1− θ)u? ∈ dom(E) and

E(θū+ (1− θ)u?) ≤ θE(u?) + (1− θ)E(ū) < E(ū)

As θ tends to 1, ‖θū+ (1− θ)u? − ū‖ < ε and this contradicts the definition of ū as local minimum.

When the function is differentiable, we can now prove that first-order optimality conditions are suffi-

cient.

Theorem 14. If E : Rn → R is continuously differentiable function with ∇E(u?) = 0 then u? is the

global minimum of E(x).
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Proof. As ∇E(u?) = 0, the inequality E(v) ≥ E(u?) + 〈∇E(u?), v − u?〉 ∀v ∈ dom(E) gives us the

condition E(v) ≥ E(u?) that characterizes a global minimum.

When the objective function is two-times differentiable, we can also characterize convexity in terms

of the Hessian.

Theorem 15. Two times continuously differentiable function E : Rn → R is convex if and only for any

u ∈ Rn we have ∇2E(u) � 0.

Proof. This is part of an exercise sheet.

As a result, for any matrix A symmetric and positive semi-definite, the quadratic function E(u) =

α+ 〈a, u〉+ 〈a,Au〉 is convex because ∇2E(u) = A � 0.

2.3.2 Analytic Properties of Convex Functions

The behavior of convex functions at the boundary of their domain can be out of control. To prevent this

case, we ask the functions to be closed.

Definition Closed convex function. A convex function is closed if its epigraph is closed.

Lemma 16. If E is convex and closed, all its level sets are closed.

Proof. For each β, the level-set {u : E(u) = β} = epi(E) ∩ {(x, t) : t = β} can be described as the

intersection of the epigraph of E, which is closed and convex, and the closed and convex set {(x, t) : t =

β}.

If E is convex and continuous and its domain dom(E) is closed, then E is closed. The converse is not

true, a closed convex function is not necessarily continuous. Consider the following examples:

• E(u) = 1
u is convex, has an open domain dom(E) = R++ = {u ∈ R : u > 0}, but is closed because

its epigraph {(u, t) ∈ R× R++ : 1
t ≤ u} is closed.

• Function E(u) = ‖u‖, where ‖ · ‖ is any norm, is closed and convex as a result of the triangle

inequality and homogeneity properties that define any norm:

‖θu+ (1− θ)v‖ ≤ ‖θu‖+ ‖(1− θ)‖v‖ = |θ|‖u‖+ |1− θ|‖‖v‖ = θ‖u‖+ (1− θ)‖‖v‖

The norms more common in computer vision and machine learning are the `p norms:

‖u‖ =

(
n∑
i=1

|ui|p
) 1

p

u ∈ Rn.

– the Euclidean norm: |u| =
√∑n

i=1 u
2
i .

– the non-differentiable `1 norm ‖u‖1 =
∑n
i=1 |ui|.

– the `∞ norm ‖u‖∞ = max1≤i≤n |ui| .

Any norm defines a system of balls Bp(u, r) =}v ∈ Rn : ‖v − u‖p ≤ r{ that are convex.

• the function

E(x, y) =

0 if x2 + y2 < 1

φ(x, y) if x2 + y2 = 1

with domain the unit ball is closed and convex for any φ(x, y) > 0 defined on the unit circle, the

boundary of the function domain. Imposing that the function is closed, which implies φ(x, y) = 0,

ensures that the function is well-behaved also on the boundary of its domain.
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The behavior of convex function at the boundary of their domain can be disappointing, but their

behavior in the interior of its domain is very simple.

Theorem 17. Let function E : C ⊂ Rn → R be convex, then E is locally bounded at u ∈ intdom(E).

Proof. Let us choose ε > 0 such that u± εei ∈ int dom(E) i = 1, . . . , n, where ei is the i-th coordinate

vector of Rn and define ε̂ = ε√
n

. A simple drawing show us that

B(u, ε̂) ⊂ ∆ = Conv{u± εei i = 1, . . . , n}.

From the corollary to Jensen’s inequality, we find a local bound M to E

M = max
v∈B(u,ε̂)

E(v) ≤ max
v∈∆

E(v) ≤ max
1≤i≤n

E(u± εei)

Theorem 18. Continuity of Convex Functions If E : Rn → R ∪ {∞} is convex, then E is locally

Lipschitz and hence continuous on int(dom(E)).

Let us first define Lipschitz continuity.

Definition A function E : Rn → Rm is Lipschitz continuous with Lipschitz constant L if for all

u, v ∈ dom(E)

‖E(u)− E(v)‖2 ≤ L‖u− v‖2

A function is locally Lipschitz continuous if for every u ∈ dom(E) there exists ε > 0 such that f|B(ε,u)

is Lipschitz continuous

Proof. Let B(u0, ε) ⊂ dom(E) and M = supu∈B(u0,ε) E(u) <∞.

Consider v ∈ B(u0, ε), v 6= u0 and define

α =
1

ε
‖v − u0‖ z = u0 +

1

α
(v − u0)

It is clear that ‖z − u0‖ = ε, α ≤ 1, and v = αz + (1− α)u0. By convexity of E then

E(v) ≤ αE(z) + (1− α)E(u0) ≤ E(u0) + α(M − E(u0)) = E(u0) +
M − E(u0)

ε
‖v − u0‖

Now define y = u0 + 1
α (u0 − v) with ‖y − u0‖ = ε and v = u0 + α(u0 − y). We have

E(v) ≥ E(u0) + α(E(u0)− E(y)) ≥ E(u0)− α(M − E(u0)) = E(u0)− M − E(u0)

ε
‖v − u0‖

As a result of the 2 inequalities

|E(v)− E(u)| ≤ M − E(u0)

ε
‖v − u0‖.

2.3.3 Examples of Convex Functions

The next statements significantly increases our possibilities of constructing convex functions.

Lemma 19. Given a closed convex function φ and a linear operator A : Rm → Rn, then E(u) = φ(A (u))

is closed and convex with

dom(E) = {u ∈ Rm : A (u) ∈ dom(φ)}.
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Proof. Let A (u) = Au+ b = x ∈ dom(φ) and A (v) = Av + b = y ∈ dom(φ), then by convexity of φ for

any θ ∈ [0, 1] we have θx+ (1− θ)y ∈ dom(φ) and

E[θu+(1−θ)v] = φ[A (θu+(1−θ)v)] = φ[θ(Au+b)+(1−θ)(Av+b)] ≤ θφ(Au+b)+(1−θ)φ(Av+b) = θE(u)+(1−θ)E(v).

This proves convexity of E. The closedness of its epigraph follows from continuity of the linear operator

A .

Lemma 20. Given two convex function E1, E2 and α1, α2 > 0, then E = α1E1 + α2E2 is convex with

dom(E) = dom(E1) ∩ domE2.

Proof. Let u, v ∈ dom(E1) ∩ domE2 and θ ∈ [0, 1], by convexity of each E1, E2 we have

α1E1(θu+ (1− θ)v) + α2E2(θu+ (1− θ)v) ≤ α1θE1(u) + α1(1− θ)E(v) + α2θE1(u) + α2(1− θ)E(v)

= θ[α1E1(u) + α2E2(u)] + (1− θ)[α1E1(v) + α2E2(v).

(2.4)

This proves the convexity of E.

Taking into account that the following 1-dimensional functions are convex:

E(u) = exp(u)

E(u) = |u|p p > 1

E(u) = |x| − log(1 + |x|)

the previous lemmas imply that the following multi-dimensional functions are convex:

E(u) =

n∑
i=1

exp(α+ 〈u, ai〉)

E(u) = |〈u, ai〉 − bi|p p > 1

Lemma 21. Given two closed and convex function E1, E2, then E(u) = max{E1(u), E1(u)} is closed

and convex with dom(E) = dom(E1) ∪ dom(E2).

Proof. The epigraph is closed and convex because it is the intersection of two closed convex sets

epi(E) = {(u, t) : u ∈ dom(E1) ∩ dom(E2), E1(u) ≤ t, E2(u) ≤ t} = epi(E1) ∩ epi(E2).

We have an even more general result.

Theorem 22. Let D be some set, not necessarily convex or finite dimensional, and

E(u) = sup
y∈C

φ(u, y) φ closed and convex in u ∀y ∈ D,

then E is closed and convex with dom(E) = {u ∈ ∩y∈Ddom(φ(·, y)) : ∃γ ∈ R s.t. φ(u, y) ≤ γ ∀y ∈ D}.

Proof. We first show the definition of the domain. If u belongs to {u ∈ ∩y∈Ddom(φ(·, y)) : ∃γ ∈
R s.t. φ(u, y) ≤ γ ∀y ∈ D}, then E(u) <∞ and u ∈ dom(E). If u does not belong to this set, then there

exists a sequence {yk} such that φ(u, yk)→∞ and u does not belong to dom(E).

(u, t) ∈ epi(E) if and only if for all y ∈ D, we have u ∈ dom(φ(·, y)) and φ(u, y) ≤ t. As a results

epi(E) = ∩y∈Depi(φ(·, y)) is closed and convex as the intersection of closed and convex sets.

As a result of this lemma, the function E∗(y) = supu∈dom(E) 〈u, y〉 − E(u) is convex for any E.
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2.4 Existence and Uniqueness of Minimizers

It only makes sense to try to solve an optimization problem if it has a solution. Specially, if the solution

is the limit of a relaxation sequence that is computed through costly iterative algorithm that might never

converge. To show that a convex problem has a minimizer, we will see that it satisfies the necessary

conditions to frame the problem in the more general framework of lower semi-continuous functions. This

section explains the tools that we will use from this framework.

Definition Lower semi-continuity. A function E : Rn → R is lower semi-continuous (l.s.c.), if for all

u it holds that

lim inf
v→u

E(v) ≥ E(u).

Theorem 23. Let E : Rn → R be l.s.c. and let there exist an α such that the sublevelset

{u ∈ Rn | E(u) ≤ α}

is nonempty and bounded, then there exists

û ∈ arg min
u
E(u).

Proof. Remember that the infimum is the largest lower bound on all possible values of E(u) and consider

a sequence (uk)k such that E(uk)→ infuE(u).

We distinguish two cases: For α = infuE(u) the non-emptyness of Sα yields the assertion. For α >

infuE(u) it holds that from some sufficiently large k0 on, we will have uk ∈ Sα. Since Sα is bounded

there exists a convergent subsequence ukl → ū. Due to the lower semi-continuity we find

inf
u
E(u) = lim

k→∞
E(uk) = lim

l→∞
E(ukl) ≥ E(ū).

Since by definition infuE(u) ≤ E(ū) we obtain equality and hence there exists ū ∈ argminuE(u).

Theorem 24. Equivalence of l.s.c. and closedness. For E : Rn → R the following two statements

are equivalent

• E is lower semi-continuous (l.s.c.).

• E is closed (its epigraph is closed).

Proof. Let E be closed and assume that E is not l.s.c. Then there exists a point u0 and a sequence (uk)k

with limk uk = u0 such that

lim inf
k

E(uk) < E(u0).

In particular, there exists α ∈ R and a subsequence (ukl)kl such that

E(ukl) ≤ α < E(u0) ∀k (2.5)

Obviously, (ukl , α) ∈ epi(E) for all kl and (ukl , α) → (u0, α), but according to (2.5) (u0, α) /∈ epi(E),

which contradicts the closedness of E.

To prove the other direction of the claim, let E be l.s.c. and assume that E is not closed. Then there

exists a sequence (uk, αk) ∈ epi(E) with (uk, αk)→ (u0, α0) /∈ epi(E). We find

lim inf
k

E(uk) ≤ lim
k
αk = α0 < E(u0).

On the other hand, due to E being l.s.c. we have E(u0) ≤ lim infk E(uk), which is a contradiction.
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2.4.1 Existence of Minimizers of Convex Functions

Definition Coercivity. A function E : Rn → R∪{∞} is called coercive if E(vn)→∞ for all sequences

(vn)n with ‖vn‖ → ∞.

It is easy to proof that coercivity implies existence of a bounded sublevelset by contradiction. We

have now all the tools to prove existence of minimizers of convex functions.

Theorem 25. Existence of a Minimizer Let E : Rn → R be convex and coercive, then an element

û ∈ arg minuE(u) exists.

Proof. As dom(E) = Rn and E convex, E is Lipschitz continuous, and thus continuous. At the same

time, as E is coercive, there exists a non-empty bounded sublevelset, and we can apply the theorem on

the existence of minimizers for lower semi-continuous functions to prove existence of a minimizer.

Theorem 26. Uniqueness. If E : Rn → R is strictly convex, then there exists at most one local

minimum which is the unique global minimum.

Proof. Assume there are 2 global minima u, v with u 6= v, E(u) = E(v), then any θ ∈ [0, 1] we have

E(θu+ (1− θ)v) < θE(u) + (1− θ)E(v),

which contradicts the definition of u, v as global minima.

2.5 Subdifferentials

2.5.1 Supporting Hyperplanes

Up to now we were describing properties of convex functions in terms of function values or their gra-

dients. When the function is not differentiable, we need to define a direction that acts as the gradient

of differentiable functions and points onto the direction of maximum ascent. In convex analysis such

directions are defined by supporting hyperplanes.

Definition Let C be a convex set. We say that hyperplane

H (g, γ) = {u ∈ Rn : 〈g, u〉 = γ, g 6= 0}

is supporting to C if any u ∈ C satisfies 〈g, u〉 ≤ γ.

We say that the hyperplane H (g, γ) separates a point u0 from C if

〈g, u〉 ≤ γ ≤ 〈g, u0〉 ∀u ∈ C.

Now we can enunciate two separation theorems necessary to define gradient-like directions for non-

differentiable functions.

Theorem 27. Separating Hyperplane Theorem Let C be a closed convex set and u0 /∈ C. Then

there exists a hyperplane H (g, γ) that strictly separates u0 from C.

Proof. See Boyd and Vandenberghe, Convex Optimization Theory, pp 46–49.

The next separation theorem deals with boundary points of convex sets.

Theorem 28. Supporting Hyperplane Theorem Let C be a closed convex set and u0 in the boundary

of C. Then there exists a hyperplane H (g, γ) supporting to C and passing through u0.

Proof. See Boyd and Vandenberghe, Convex Optimization Theory, pp 50–51.
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2.5.2 The Subdifferential

We now have all the tools to introduce the notion of subdifferential that extends the notion of gradient

to non-differentiable functions.

Definition Subdifferential. Let E : Rn → R be convex, the subdifferential of E at u is

∂E(u) = {p ∈ Rn | E(v)− E(u)− 〈p, v − u〉 ≥ 0, ∀v ∈ Rn}

• Elements of ∂E(u) are called subgradients.

• If ∂E(u) 6= ∅, we call E subdifferentiable at u.

• By convention, ∂E(u) = ∅ for u /∈ dom(E).

The subdifferential ∂E is necessary because subgradients are not unique. Consider for example a

function as friendly-looking as the absolute value at zero:

∀g ∈ [−1, 1], E(u) = |u| ≥ gu = E(0) + 〈g, u− 0〉

As a result, the subdifferential at 0 contains the interval ∂E(0) = [−1, 1]. In general ∂E(u) is a set. Form

its definition as a set of linear constraints, we can easily see that it is closed and convex, in this case the

interval [−1, 1].

2.5.3 Subdifferentiablity and Convexity

The subdifferentiability of a function is important because it implies its convexity.

Theorem 29. If for any u ∈ dom(E) the subdifferential ∂E(u) is non-empty, then E is a convex function.

Proof. Given u, v ∈ dom(E), and θ ∈ [0, 1], let uθ = θu + (1 − θ)v. As the subdifferential ∂E(uθ) is

non-empty, we can pick g ∈ ∂E(uθ) satisfying

E(uθ) ≥ E(v) + 〈g, v − uθ〉 = E(v) + θ〈g, v − u〉

E(uθ) ≥ E(u) + 〈g, u− uθ〉 = E(u)− (1− θ)〈g, v − u〉.

Multiplying the first inequality by 1 − θ, the second by θ, and adding the results, we get the inequality

that defines a convex function E(θu+ (1− θ)v) ≤ θE(u) + (1− θ)E(v).

The converse statement is also true.

Theorem 30. If E is a closed convex function and u ∈ int(dom(E)), then ∂E(u) is a non-empty bounded

set.

Proof. Note that the point (E(u), u) belongs to the boundary of epi(E), which is convex. As a result,

there exists a hyperplane H = (g, γ) supporting to epi(E) at (E(u), u):

γτ + 〈g, u〉 ≤ γE(u) + 〈g, u〉 ∀(u, τ) ∈ epi(E)

Without loss of generality, we can assume ‖g‖2 + γ2 = 1. We can determine the sign of γ by checking

the inequality for any point in the epigraph. In particular for any τ ≥ E(u), we have (u, τ) ∈ epi(E) that

results in γ > 0.

To find a subgradient p ∈ ∂E(u), we will use that a convex function is locally upper bounded in the

interior of its domain. That is, there is some ε > 0,M > 0 such that B(u, ε) ⊂ dom(E) and

E(v)− E(u) ≤M‖v − u‖ ∀v ∈ B(u, ε)
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For any v from this ball, the supporting hyperplane equation reads

〈g, v − u〉 ≤ γ(E(v)− E(u)) ≤ γM‖v − u‖

In particular, if we choose v = u+ εg we get ‖g‖2 ≤Mγ‖d‖. Plugging now the condition ‖g‖2 + γ2 = 1

we get

γ ≥ 1√
1 +M2

.

If we choose p = g
γ we obtain

E(v) ≥ E(u) + 〈p, v − u〉 ∀v ∈ dom(E)

and p is a subgradient of E at u. Finally, to show that the subdifferential is bounded we assume that

p 6= 0 and consider the point v = u+ ε p
‖p‖ such that

ε‖p‖ = 〈p, v − u〉 ≤ E(v)− E(u) ≤M‖v − u‖ = Mε

Thus, ∂E(u) is bounded by M .

The conditions of this theorem cannot be relaxed. For instance, the function E(u) = −
√
u is convex

and closed in its domain {u : u ≥ 0}, but its subdifferential does not exists at the only point (0) that is

not in its interior. This is just another reminder that considering the interior of the domain for convex

functions is important.

To conclude this section, let us point out to the property of the subgradients that makes it important

for optimization.

Theorem 31. Optimality Condition. 0 ∈ ∂E(û) if and only if û ∈ arg minu∈Rn E(u).

Proof. If 0 ∈ ∂E(û), by definition of the subgradient

E(u) ≥ E(û) + 〈0, u− û〉 = E(û) ∀u ∈ dom(E)

and we conclude that û is a minimizer of E. On the other hand, if E(u) ≥ E(û) for all u ∈ dom(E), then

0 satisfies the condition of subgradient of E at û.

2.5.4 Alternative Definitions of Subgradients

The supporting hyperplane theorem appears on the proof of the “subdifferentiability” theorem because

subgradients can be interpreted in terms of supporting hyperplanes.

Theorem 32. Geometric interpretation of Subgradients. Any subgradient p ∈ ∂E(u) represents

a non-vertical supporting hyperplane to epi(E) at (u,E(u)).

Proof. Let p ∈ ∂E(u). Then, by definition of subgradient,

E(v)− E(u)− 〈p, v − u〉 ≥ 0 ∀v ∈ Rn

α− E(u)− 〈p, v − u〉 ≥ 0 ∀(v, α) ∈ epi(E)〈[
−p
1

]
,

[
v

α

]
−

[
u

E(u)

]〉
≥ 0 ∀(v, α) ∈ epi(E).

As a result, the non-vertical hyperplane H = (g, γ) with g = (−p, 1) and γ = 〈p, u〉 − E(u) supports

epi(E) at (u,E(u)).
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Apart from this geometric interpretation, it is useful to compute the subdifferential of a differentiable

function to understand why it is a generalization of the gradient. The next theorem does that.

Theorem 33. Subdifferential of of Differentiable Functions. Let the convex function E : Rn →
R ∪ {∞} be differentiable at u ∈ int(dom(E)). Then

∂E(u) = {∇E(u)}.

Proof. The subdifferential ∂E(u) of some convex E at u ∈ dom(f) is given as

{p ∈ Rn : E(z)− E(u)− 〈p, z − u〉 ≥ 0, ∀ z ∈ dom(f)} .

Since u ∈ int(dom(E)), we find that for all v ∈ Rn, z = u± εv ∈ dom(E) for ε small enough. Therefore,

it holds that

E(u+ εv) ≥ E(u) + ε〈p, v〉, E(u− εv) ≥ E(u)− ε〈p, v〉,

for all v ∈ Rn and ε small enough. This implies that

lim
ε→0

E(u+ εv)− E(u)

ε
≥ 〈p, v〉, lim

ε→0

E(u)− E(u− εv)

ε
≤ 〈p, v〉,

which means

〈∇E(u), v〉 ≥ 〈p, v〉, 〈∇E(u), v〉 ≤ 〈p, v〉,

i.e.

〈∇E(u)− p, v〉 = 0

for all v ∈ Rn. For the particular choice of v := ∇E(u)− p we find p = ∇f(u). The above concludes the

proof if we can show that ∂f(u) is non-empty, which follows from the Theorem on Subdifferentiability.

2.5.5 Subdifferential Rules

In the same way that the gradient of a differentiable function is only defined for points in the interior

of the domain, the subdifferential of a proper convex function is always defined for points in the relative

interior of its domain.

The relative interior of a set is a refinement of the concept of the interior that is useful when dealing

with low-dimensional sets embedded in higher-dimensional spaces. Intuitively, the relative interior of a

set contains all points that are not on the “edge” of the set, relative to the smallest subspace in which

this set lies. When the set is convex, the definition takes the following simple form:

Definition Relative Interior of Convex Sets The relative interior of a convex set C is defined as

ri(C) := {x ∈ C | ∀y ∈ C, ∃λ > 1, s.t. λx+ (1− λ)y ∈ C}

As mentioned earlier, the subdifferentiability of convex functions can be guaranteed for points that

are not necessarily in the interior of the domain, but that are in its relative interior. To better understand

this difference, consider the line segment I = [−1, 1] as a convex subset of the Euclidean plane I ⊂ R2.

The interior of I is empty with the Euclidean topology of R2, but its relative interior is the open line

segment ri(I) = (0, 1).

One key property of the relative interior is that it is not empty for convex sets.

Theorem 34. Let C be a non-empty convex set, then ri(C) is not empty.

Now that we understand where subdifferentials exists, we can learn the rules that guide their compu-

tation.
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Theorem 35. Sum Rule. Let E1, E2 be convex functions, then ∂(E1 +E2)(u) = ∂E1(u) + ∂E2(u) for

all u ∈ ri(dom(E1)) ∩ ri(dom(E2)).

Proof. See Nesterov, Introductory Lectures on Convex Optimization, Lemma. 3.1.9.

Theorem 36. Chain Rule Given the linear operator A ∈ Rm×n and the convex function E : Rm →
R ∪ {∞}, then ∂(E ◦A)(u) = A∗∂E(Au) for all u ∈ ri(dom(E)) ∩ range(A).

Proof. See Nesterov, Introductory Lectures on Convex Optimization, Nesterov, Lemma. 3.1.8.

L-smooth functions

Assuming only differelltiability of the objective function we cannot get many reasonable properties of

minimization processes. We usually have to impose some additional assumptions on the magnitude of

the derivatives. In optimization these kind of assumptions are presented in the form of a Lipschitz

condition for a derivative of certain order. Among them, we will make heavy use of L-smoothness.

Definition L-smooth function A differentiable function f : Rn → R is L-smooth is

‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖ ∀x, y ∈ Rn.

If a function is twice-continusouly differentiable, a sufficient condition for L-smoothness is the follow-

ing:

Lemma 37. A twice-continuously differentiable function f is L-smooth if and only if ‖∇2 f(x) ‖ ≤ L ∀ x ∈ Rn.

Proof. Let us first prove that any twice-continuously differentiable function with bounded Hessian is

smooth. Given any x, y ∈ Rn, we have the componentwise inequality

∇f(y) = ∇f(x) +

∫ 1

0

∇2f(x+ τ(y − x))(y − x)dτ

= ∇f(x) +

(∫ 1

0

∇2f(x+ τ(y − x))dτ

)
(y − x)

Re arranging terms and using Cauchy-Schwarz inequality,

‖∇f(y)−∇f(x)‖ =

∥∥∥∥(∫ 1

0

∇2f(x+ τ(y − x))dτ

)
(y − x)

∥∥∥∥
≤
∥∥∥∥∫ 1

0

∇2f(x+ τ(y − x))dτ

∥∥∥∥ ‖y − x‖
≤
∫ 1

0

‖∇2f(x+ τ(y − x))‖dτ‖y − x‖ ≤ L‖y − x‖.

Let us now prove the other direction, that is, that a twice-continuously differentiable function that is

L-smooth has bounded Hessian. As f is wice-continuously differentiable, we have∥∥∥∥(∫ α

0

∇2f(x+ τs)dτ

)
s

∥∥∥∥ = ‖∇f(x+ αs)−∇f(x)‖ ≤ αL‖s‖

Dividing this inequality by α and tending α→ 0 we obtain ‖∇2f(x)‖ ≤ L.

The next statement is important for the geometric interpretation of L-smooth functions.

Lemma 38. If f is L-smooth, then for any x, y ∈ Rn

|f(y)− f(x)− 〈∇f(x), y − x〉| ≤ L

2
‖y − x‖2.
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Proof. For all x, y ∈ Rn, we have

f(y) = f(x) +

∫ 1

0

〈∇f(x+ τ(y − x)), y − x〉dτ

= f(x) + 〈∇f(x), y − x〉+

∫ 1

0

〈∇f(x+ τ(y − x))−∇f(x), y − x〉dτ

Re-arranging terms we get

|f(y)− f(x)− 〈∇f(x), y − x〉| =
∣∣∣∣∫ 1

0

〈∇f(x+ τ(y − x))−∇f(x), y − x〉dτ
∣∣∣∣

≤
∫ 1

0

|〈∇f(x+ τ(y − x))−∇f(x), y − x〉|dτ

≤
∫ 1

0

‖∇f(x+ τ(y − x))−∇f(x)‖‖y − x‖dτ =

∫ 1

0

τL‖x− y‖2dτ =
1

2
L‖x− y‖2

Geometrically, we can draw the following picture. Given a differentiable L-smooth function f and

x0 ∈ Rn, we can define two quadratic functions

φ1(x) = f(x0) + 〈∇f(x0), x− x0〉 − u
L

2
‖x− x0‖2

φ2(x) = f(x0) + 〈∇f(x0), x− x0〉+ u
L

2
‖x− x0‖2

that upper and lower bound the function

φ1(x) ≤ f(x) ≤ φ2(x) ∀x ∈ Rn.

Definition Strong Convexity A function E : Rn → R is called strongly convex with constant m or

m-strongly convex if f(x)− m
2 ‖x‖

2
2 is still convex.

Theorem 39. For a continusously differentiable function f , the following are equivalent:

1. f(x)− m
2 ‖x‖

2
is convex

2. f(y) ≥ f(x) + 〈∇f(x), y − x〉+ m
2 ‖y − x‖

2

3. 〈∇f(x)−∇f(y), x− y〉 ≥ m‖y − x‖2

4. if f is twice-continuously differentiable, ∇2f(x) � m · I

Proof. See Ryu, Boyd, A Primer on Monotone Operator Methods, Appendix A



Chapter 3

Fixed-Point Iterations

Convex optimization problems come in so many shapes and sizes that the algorithms developed to solve

them form a zoo. Each algorithm exploits a particular feature of the convexity of the objective function

or the constrain set to find the solution of the problem. As a result, we traditionally also analyze the

convergence of each algorithm and its properties in a case by case manner.

It is possible to interpret many of these algorithms as fixed-point iterations in a unified manner and

analyze their convergence with the same approach. To do so, we first need to formulate the optimization

problem as finding a zero of a monotone operator. This problem is converted into the problem of finding

a fixed point of a function and solved by the fixed point iteration algorithm. Different choices of the

monotone operator and fixed point function result in different well-known algorithms.

This new view on many classic algorithms provides a convenient strategy to analyze their convergence

with a single approach. The price to pay, however, is an additional level of abstraction that might at first

seem disconnected from intuitive algorithms like gradient descent. Be patient, and read on.

The material of this chapter is taken mostly from: Ryu and Boyd, Primer on Monotone Operator

Methods, 2016.

3.1 Nonexpansive mappings and contractions

Definition A function F : Rn → Rn is a contraction if it is Lipschitz continuous with constant L < 1,

that is,

‖F (x)− F (y)‖ ≤ L‖x− y‖ ∀x, y ∈ dom(F ).

When L = 1, we say that F is a nonexpansive operator.

In other words, mapping a pair of points by a contraction reduces the distance between them; mapping

them by a nonexpansive operator does not increase the distance between them. See Figure 3.1.

Intuitively, it is useful to keep in mind an exemplary contraction and an exemplary nonexpansive

operator. You can think of a contraction as a “zoom-out” that reduces the distance between two points,

and think of a nonexpansive operator as a rotation of the coordinate plane. It is then only natural to

see that the combination of two zoom-outs (contractions) is still a zoom-out, while the combination of a

zoom-out and a rotation is also a zoom-out. The following lemma describes this.

Lemma 40. Convex combinations as well as compositions of nonexpansive operators are nonexpansive.

Proof. If F1 : Rn → Rn has Lipschitz constant L1 and F2 : Rn → Rn has Lipschitz constant L2, then the

composition F2F1 has Lipschitz constant L2L1. Indeed, let x, y ∈ dom(F1) such that F1x, F1y ∈ dom(F2)

19



20 CHAPTER 3. FIXED-POINT ITERATIONS

(a) Contraction Mapping (b) Nonexpansive Mapping

Fig. 3.1: Illustration of a contractive and a nonexpansive mapping F on two points. Source: Ryu and Boyd,

Primer on Monotone Operator Methods, 2016

then

‖F2F1x− F2F1y‖ ≤ L2‖F1x− F1y‖ ≤ L2L1‖x− y‖

As a result, the composition of nonexpansive operators is nonexpansive, and the composition of a con-

traction and a nonexpansive operator is a contraction.

Similarly, if α1, α2 ∈ R, then α1F1 + α2F2 has Lipschitz constant |α1|L1 + |α2|L2. Indeed, let

x, y ∈ dom(F1) ∩ dom(F2), then

‖(α1F1 + α2F2)x− (α1F1 + α2F2)y‖ ≤ ‖α1F1x− α1F1y‖+ ‖α2F2x− α2F2y‖

≤ |α1|L1‖x− y‖+ |α2|L2‖x− y‖

≤ (|α1|L1 + |α2|L2)‖x− y‖. (3.1)

As a result, a weighted average of nonexpansive operators θF1 + (1 − θ)F2 with θ ∈ [0, 1] is also nonex-

pansive. If one of them is a contraction and θ ∈ (0, 1), then the weighted average is a contraction.

Contractions are important for us because they have a single fixed point and we can use this property

to design iterative algorithms that converge to it.

Theorem 41. If F is nonexpansive and dom(F ) = Rn, then its set of fixed points

{x ∈ dom(F ) : x = F (x)}

is closed and convex. If F is a contraction and dom(F ) = Rn, its has exactly one fixed point.

Proof. Let F : Rn → R be nonexpansive and denote by X the set of its fixed points. Note that we can

also define X = (I−F )−1({0}), where I is the identity function. From this definition, X is closed because

it is the preimage of a continuous function (F − I) on a closed set ({0}). To show that it is convex, let

x, y ∈ dom(F ) and θ ∈ [0, 1] and define z = θx+(1−θ)y. We will show that z ∈ X. As F is nonexpansive

‖Fz − x‖ = ‖Fz − Fx‖ ≤ ‖z − x‖ = (1− θ)‖x− y‖

‖Fz − y‖ = ‖Fz − Fy‖ ≤ ‖z − y‖ = θ‖x− y‖

‖x− y‖ ≤ ‖Fz − x‖+ ‖Fz − y‖ ≤ ‖x− y‖

The last triangle inequality tells us that Fz is on the line segment between x and y. In particular, as

‖Fz − y‖ = θ‖x− y‖, we have Fz = θx+ (1− θ)y = z and z is a fixed point of F .

Let x, y ∈ X be again fixed points of F and F be now a contraction with Lipschitz constant L < 1,

then

‖x− y‖ = ‖Fx− Fy‖ ≤ L‖x− y‖.

This is a contradiction unless x = y, which implies that there is a single fixed-point.
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There are few examples of contractions that are common in convex optimization. Most of the time we

work with nonexpansive operators. Among them, a particular type called averaged operator, is specially

useful and common.

Definition An operator G is averaged if G = (1− α)I + αR for some α ∈ (0, 1) and nonexpansive R.

G is nonexpansive because it is a convex combination of nonexpansive operators (the identity I is non-

expansive). Moreover, it is easy to see that G has the same fixed points as R.

u∗ = Ru∗ ⇔ (1− α)u∗ + αu∗ = (1− α)u∗ + αRu∗ ⇔ u∗ = [(1− α)I + αR]u∗ = Gu∗ (3.2)

We will use this property to design algorithms that find fixed points of nonexpansive operators R and

are parametrized by α ∈ (0, 1).

Properties of Averaged Operators

Lemma 42. If a function G : Rn → Rn is averaged with respect to α ∈ (0, 1), then it is also averaged

with respect to any other parameter α̃ ∈ (0, α).

Proof. Since G is averaged with respect to α there exists a nonexpansive operator R such that G =

αI + (1− α)R. We find

G = αI + (1− α)R

= α̃I + (α− α̃)I + (1− α)R

= α̃I + (1− α̃)

(
α− α̃
1− α̃

I +
1− α
1− α̃

R

)
︸ ︷︷ ︸

=:R̃

.

And R̃ is still nonexpansive because

‖R̃(u)− R̃(v)‖ ≤ α− α̃
1− α̃

‖u− v‖+
1− α
1− α̃

‖R(u)−R(v)‖

≤ α− α̃
1− α̃

‖u− v‖+
1− α
1− α̃

‖u− v‖

= ‖u− v‖.

Lemma 43. If G1 : Rn → Rn and G2 : Rn → Rn are averaged, then G2 ◦G1 is also averaged.

Proof. Let G1 = α1I + (1 − α1)R1 and G2 = α2I + (1 − α2)R2 for nonexpansive operators R1 and R2.

Then

G2(G1)(u) = α2G1(u) + (1− α2)R2(G1(u))

= α1α2u+ α2(1− α1)R1(u) + (1− α2)R2(G1(u))

= α1α2u+ (1− α1α2)

(
α2(1− α1)

1− α1α2
R1(u) +

(1− α2)

1− α1α2
R2(G1(u))

)
.

Since the concatenation of nonexpansive operators is nonexpansive, and convex combinations of nonex-

pansive operators are nonexpansive, we conclude that G2 ◦G1 is averaged.

It is possible to determine if an operator is averaged without explicitly finding its decomposition into

a convex combination of the identity and a nonexpansive operator. We do so through the notion of firmly

nonexpansive operators.
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Definition A function G : Rn → Rn is called firmly nonexpansive, if for all u, v ∈ Rn it holds that

‖G(u)−G(v)‖22 ≤ 〈G(u)−G(v), u− v〉.

Lemma 44. A function G : Rn → Rn is firmly nonexpansive if and only if G is averaged with α = 1
2 .

Proof. First, let G be averaged with α = 1/2, i.e., G = 1
2I + 1

2R for some nonexpansive operator

R = 2G− I. As R is nonexpansive, we have

‖u− v‖22 ≥ ‖R(u)−R(v)‖2 = ‖2G(u)− 2G(v)− (u− v)‖2

= 4‖G(u)−G(v)‖2 − 4〈G(u)−G(v), u− v〉+ ‖u− v‖2,

which implies 〈G(u)−G(v), u− v〉 ≥ ‖G(u)−G(v)‖22 and shows that G is firmly nonexpansive.

Second, let G be firmly nonexpansive and define R = 2G− I, then

‖R(u)−R(v)‖2 = ‖2G(u)− 2G(v)− (u− v)‖2

= 4‖G(u)−G(v)‖2 − 4〈G(u)−G(v), u− v〉+ ‖u− v‖2

≤ ‖u− v‖2,

which shows that R is nonexpansive, i.e., G = 1
2I + 1

2R is averaged with α = 1/2.

3.2 Fixed-point Iterations

We are now ready to discuss the main algorithm of this chapter.

Definition Let G : Rn → R, and u0 ∈ Rn be a starting point, the fixed-point or Picard iteration is

uk+1 = G(uk).

As the name suggests, the fixed-point iteration is used to find a fixed point u of G. Using this iteration

to solve an optimization problem involves two steps: 1) find a suitable G whose fixed points are solutions

to the problem at hand, 2) show that the iteration converges to a fixed point. For this second step, we

show two simple conditions that guarantee convergence.

Theorem 45. Banach fixed-point theorem. If the update rule G : Rn → Rn is a contraction with

Lipschitz constant L < 1, then the fixed-point iteration converges to the unique fixed-point û of G with

‖uk − û‖ ≤ Lk‖u0 − û‖.

Theorem 46. Krasnosel’skii-Mann Theorem. If the operator G : Rn → Rn is averaged and has a

fixed-point, then the iteration

uk+1 = G(uk)

converges to a fixed point of G for any starting point u0 ∈ Rn.

Proof. We’ll make use of the identity

‖(1− θ)a+ θb‖2 = (1− θ)‖a‖2 + θ‖b‖2 − θ(1− θ)‖a− b‖2,

which holds for any θ ∈ R, a, b ∈ Rn. It can be verified by expanding both sides as a quadratic function of

θ. The first two terms correspond to the definition of convexity for function ‖ · ‖2, the third one improves

this bound.
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Because G is averaged, there exists a non-expansive mapping T : Rn → Rn such that G = (1−θ)I+θT .

Recall that T has the same fixed points as F . We consider the fixed point iteration

uk+1 = G(uk) = (1− θ)uk + θTuk.

Let U be the (nonempty) set of fixed-points of G and u∗ ∈ U , we have then G(u∗) = u∗ and

‖uk+1 − u∗‖2 = ‖(1− θ)(uk − u∗) + θ(Tuk − u∗)‖2

= (1− θ)‖uk − u∗‖2 + θ‖Tuk − u∗‖2 − θ(1− θ)‖Tuk − uk‖2

= (1− θ)‖uk − u∗‖2 + θ‖Tuk − Tu∗‖2 − θ(1− θ)‖Tuk − uk‖2

≤ (1− θ)‖uk − u∗‖2 + θ‖uk − u∗‖2 − θ(1− θ)‖Tuk − uk‖2

= ‖uk − u∗‖2 − θ(1− θ)‖Tuk − uk‖2

(*)

This shows that the distance to the solution set decreases at each step. We call this property Fejèr

monotonicity.

Applying the inequality k times yields

‖uk+1 − u∗‖2 ≤ ‖u0 − u∗‖2 − θ(1− θ)
k∑
j=0

‖Tuj − uj‖2

and hence
k∑
j=0

‖Tuj − uj‖2 ≤ ‖u
0 − u∗‖2 − ‖uk+1 − u∗‖2

θ(1− θ)
≤ ‖u

0 − u∗‖2

θ(1− θ)
.

As the upper bound does not depend on k, the series of non-negative terms remains bounded as k →∞
and we conclude that ‖Tuk − uk‖ → 0 as k →∞.

From that we can also estimate a convergence rate of the fixed-point residual:

min
j=0...k

‖Tuj − uj‖2 ≤ ‖u0 − u∗‖2

(k + 1)θ(1− θ)
,

Since the iterates {uk}∞k=1 lie in the compact set

C =
{
v | ‖v − u∗‖ ≤ ‖u0 − u∗‖

}
,

there exists at least one subsequence {ukl}∞l=1 which converges to some point û.

Since Tukl − ukl → 0, we have Gukl − ukl = (G − I)ukl → 0 and, as G − I is Lipschitz continuous

because T is nonexpansive, we have that Gû = û and the subsequence converges to a point in û ∈ U .

As (*) holds for any point from u∗ ∈ U , we can apply it the point û our subsequence converges to. We

know that for the iterates of the original sequence the distance to this point is monotonically decreasing,

‖uk+1 − û‖ ≤ ‖uk − û‖.

Since a subsequence {ukl}∞l=1 of {uk}∞k=1 is converging to û, and ‖uk − û‖ is monotonically decreasing,

we have convergence of the entire sequence to û.

3.3 Gradient Descent as an Averaged Operator

Given a differentiable convex function E : Rn → R, consider the problem

u ∈ arg min
u∈Rn

E(u).
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The first-order optimality conditions of the problem characterize the solution u? by

∇E(u?) = 0 ⇐⇒ u? = (I − τ∇E)u?

for any τ 6= 0. The fixed-point iteration for this setup is

uk+1 = uk − τ∇E(uk).

This algorithm is called gradient descent with a constant step size τ > 0. To guarantee convergence

of this fixed-point iteration, we need to determine under which conditions (I − τ∇E) is a contraction or

an averaged operator. To this purpose, we will use the following result.

Theorem 47. Baillon-Haddad theorem. A continuously differentiable convex function E : Rn → R
is L-smooth if and only if 1

L∇E is firmly nonexpansive, i.e.

〈∇E(u)−∇E(v), u− v〉 ≥ 1

L
‖∇E(u)−∇E(v)‖22

for all u, v ∈ Rn.

Proof. See Nesterov, Introductory Lectures on Convex Optimization, Theorem 2.1.5.

We can now determine the conditions under which gradient descent with a constant step size converges.

Theorem 48. If E : Rn → R has a minimizer, is convex, and L-smooth, then the gradient descent

iteration with constant step size τ ∈ (0, 2
L ) converges to a minimizer.

Proof. We will show that the fixed-point operator of gradient descent G(u) = u− τ∇E(u) is averaged.

By Baillon-Haddad theorem, we know that 1
L∇E is firmly non-expansive, or equivalently, averaged

with α = 1/2. Let 1
L∇E = 1

2 (I + T ) for a non-expansive T , it holds

G(u) = u− τL 1

L
∇E(u) =

(
1− Lτ

2

)
I +

Lτ

2
(−T )

It is clear that if T is non-expansive, (−T ) is also non-expansive, and consequently G is averaged for

τ ∈ (0, 2
L ).

Theorem 49. If E : Rn → R is strongly convex with parameter m and strongly smooth with parameter

L, then the gradient descent iteration with constant step size τ ∈ (0, 2
L ) converges to the unique minimizer

u? with geometric convergence rate

‖uk − u?‖ ≤ ck‖u0 − u?‖.

Proof. We will show that (I−τ∇E) is Lipschitz with parameter c = max{|1−τm|, |1−τL|}. To simplify

the proof, we will assume that E is twice continuously differentiable although the result is still true

without this assumption. If E is twice continuously differentiable, we have

• D(I − τ∇E) = In − τ∇2E, where In is the identity matrix

• m strong convexity is equivalent to ∇2E � mIn

• L-smoothness corresponds to ∇2E � LIn

Putting these together, we have

(1− τL)In � D(I − τ∇E) � (1− τm)In

‖D(I − τ∇E)‖ ≤ max{|1− τm|, |1− τL|}

(I − τ∇E) has Lipscitz constant c = max{|1− τm|, |1− τL|}. (3.3)

As a result, (I − τ∇E) is a contraction for τ ∈ (0, 2
L ) and the fixed-point iteration converges to the

unique fixed point of the contraction with the geometric rate ck by Banach fixed-point theorem.
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3.4 Projected Gradient Descent

Definition Projection For a (nonempty) closed convex set C ⊂ Rn,

πC(v) = argmin
u∈C

‖u− v‖22

is called the projection of v onto the set C.

In plain English, the projection of a point v onto C is the point in C that is closest v. As a result, if

v ∈ C then πC(v) = v and the reverse if also true: πC(v) = v if and only if v ∈ C.

As the projection is defined in terms of a minimization problem, it is natural to wonder if the opti-

mization problem has a solution and whether this solution is unique. The convexity of the set C, gives

us a positive answer.

Theorem 50. Existence and Uniqueness of the Projection For any (nonempty) closed convex set

C ⊂ Rn and any v the projection πC(v) exists and is single valued.

Proof. To show that πC(v) is not empty, we define

E(u) =

‖u− v‖2 if u ∈ C

∞ otherwise
.

As C is not empty, we can pick v0 ∈ C and define the sublevel set SE(v0) = {u ∈ Rn : E(u) ≤ E(v0)}.
As v0 ∈ SE(v0), the sublevel set is not empty. It is also bounded because any u ∈ SE(v0), satisfies

‖u‖ ≤ ‖u− v‖+ ‖v‖ =
√
E(u) + ‖v‖ ≤

√
E(v0) + ‖v‖.

The closedness of C implies the closedness of epi(E), and we have already seen that closed functions are

l.s.c. As a result, we can use Theorem 23 to prove existence of a minimizer of E(u). The minimizer

is unique because E(u) is strictly convex as a result of the convexity of C and the strict convexity of

‖u− v‖22.

As a result of this theorem, although πC(v) is by definition a set, we usually identify πC(v) with the

single element in the set.

It is useful to know the form of the projection operator for some common sets. For instance:

• C = {u ∈ Rn | ‖u‖2 ≤ 1}

• C = {u ∈ Rn | ‖u‖∞ := maxi |ui| ≤ 1}

• C = {u ∈ Rn | ui ∈ [a, b]}

• C = {u ∈ Rn | ui ≥ a}

• C = {u ∈ Rn | ‖u‖1 =
∑
i |ui|}

Projection operators are necessary in optimization to solve problems subject to a closed convex con-

straint set C

u∗ ∈ arg min
u∈C

E(u), (3.4)

When the objective function E is also convex, the optimization problem is convex, and we know under

which condition it has a solution but we do not know how to solve it yet. The projected gradient algorithm

is the first step towards this goal.
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The projected gradient descent algorithm builds on gradient descent to find a solution of (3.4) when

E is convex and L-smooth. To this goal, let us look at the gradient descent update rule

uk+1 = uk − τ∇E(uk).

The problem with this update for solving problem (3.4) is that, even if uk ∈ C, the update uk+1 might

lie outside the feasible set C. Gradient projection solves this by simply projecting every iteration back

to the feasible set with uk+1 = πC(uk − τ∇E(uk)).

Definition Gradient Projection Algorithm Let C ⊂ Rn be a nonempty closed convex set and let

E : Rn → R ∈ C1(Rn). Then, for u0 ∈ C

uk+1 = πC(uk − τ∇E(uk))

is called the gradient projection algorithm.

Similar to gradient descent, we can write the gradient projection algorithm as a fixed point iteration

of an operator

G(u) = πC(u− τ∇E(u))

to analyze its convergence. In particular, we need to determine under which conditions G is an averaged

operator or a contraction to use Banach or Krasnosel’skii-Mann theorems to prove its convergence.

From the analysis of gradient descent, we know that if E is L-smooth and τ ∈ (0, 2
L ) the operator

G1(u) = u− τ∇E(u)

is averaged. If we know recollect that the composition of averaged operators is also averaged, we only

need to show that the projection πC is averaged. In fact, we will see that is it firmly nonexpansive, and

therefore, it is averaged with α = 1
2 .

Theorem 51. The projection πC onto a nonempty closed convex set C ⊂ Rn is firmly nonexpansive, i.e.

it meets

〈u− v, πC(u)− πC(v)〉 ≥ ‖πC(u)− πC(v)‖2 ∀u, v ∈ Rn.

Proof. Let δC be the indicator function of the convex set C, which is defined as

δC(v) =

0 if v ∈ C

∞ otherwise
.

As C is not empty, closed, and convex, δC is proper, closed, and convex. We can now write

πC(u) = argmin
z∈Rn

δC(z) + ‖z − u‖22

From the optimality conditions of the optimization problem we have

u− πC(u) ∈ ∂δC(πC(u))

v − πC(v) ∈ ∂δC(πC(v)).

At the same time, recall the definition of the subgradient of function E

E(z)− E(x) ≥ 〈p, z − x〉 ∀z p ∈ ∂E(x).
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If we apply this inequality with E = δ at the points x = πC(u) and x = πC(v), we have

δC(z) = δC(z)− δC(πC(u)) ≥ 〈u− πC(u), z − πC(u)〉 ∀z

δC(z) = δC(z)− δC(πC(v)) ≥ 〈v − πC(v), z − πC(v)〉 ∀z.

(3.5)

If we choose z = πC(v) for the first inequality and z = πC(u) for the second and add both inequalities,

we have δC(z) = 0 and

0 ≥ 〈u− πC(u) + πC(v)− v, πC(v)− πC(u)〉

0 ≥ 〈u− v, πC(v)− πC(u)〉+ ‖πC(v)− πC(u)‖2

〈u− v, πC(u)− πC(v)〉 ≥ ‖πC(u)− πC(v)‖2.

We can now state the main convergence result of projected gradient algorithm.

Theorem 52. For an L-smooth energy E that has a minimizer and a choice τ ∈ (0, 2
L ) the gradient

projection converges to a solution of

u∗ ∈ arg min
u∈C

E(u) (3.6)

with convergence rate O(1/k).

The convergence rate O(1/k) of the vanilla projected gradient algorithm is suboptimal, but it can

be improved to O(1/k2) with acceleration techniques that introduce an extrapolation step exploiting the

L-smoothness of E . We can also improve this rate if our objective function is m-strongly convex.

Theorem 53. For E being L-smooth and m-strongly convex and τ ∈ (0, 2
L ) the gradient projection

algorithm converges to the (unique) global minimizer u∗ with E(uk)− E(u∗) ∈ O(ck) with c < 1.

Proof. Recall that the composition of a non-expansive operator with a contraction is a contraction. As

a result, whenever G1(u) = u− τ∇E(u) is a contraction, the gradient projection operator πC(G1(u)) is

a contraction and we can use Banach fixed-point theorem to prove convergence with a linear rate .

3.4.1 Proximal Gradient

Definition Proximal Operator Given a closed, proper, convex function E : Rn → R ∪ {∞}, the

mapping proxE : Rn → Rn defined as

proxE(v) := argmin
u∈Rn

E(u) +
1

2
‖u− v‖2

is called the proximal operator or proximal mapping of E.

The proximal operator is a generalization of the projection. Indeed, given a nonempty, closed, convex

set C, the projection πC is the proximal operator of the indicator function

δC(v) =

0 if v ∈ C

∞ otherwise
.

Many of the properties of the projection are inherited by the proximal operator.
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Lemma 54. Given a closed, proper, and convex function E : Rn → R̄ and u ∈ Rn there exists a unique

proximal proxE(u).

Proof. We have already proved the existence of minimizers of convex functions that are coercive, that it,

functions that have bounded sublevel sets. In the case of the proximal operator, it is easy to see that

E(u) + 1
2 ‖u− v‖

2
is convex if E is convex and that it has bounded sublevel sets because

E(u) +
1

2
‖u− v‖2 < γ ⇒ ‖u− v‖2 < 2γ.

Uniqueness is a consequence of the strong convexity of (1/2) ‖u− v‖2, which implies strong convexity

of E(u) + (1/2) ‖u− v‖2

Similarly, the proximal operator is also firmly nonexpansive, as the next theorem shows.

Theorem 55. The proximal operator proxE for a closed, proper, convex function E is firmly nonexpan-

sive, that is, it satisfies

〈u− v, proxE(u)− proxE(v)〉 ≥ ‖proxE(u)− proxE(v)‖2 ∀u, v ∈ Rn.

Proof. Let x = proxE(u) and y = proxE(v), the optimality conditions then

x = min
z

E(z) + ‖z − u‖2 ⇒ u− x ∈ ∂E(x)

x = min
z

E(z) + ‖z − v‖2 ⇒ v − y ∈ ∂E(y).

(3.7)

At the same time, by definition of the subgradient we have

E(z)− E(x) ≥ 〈∂E(x), z − x〉 = 〈u− x, z − x〉 ∀z

E(z)− E(y) ≥ 〈∂E(y), z − y〉 = 〈v − y, z − y〉 ∀z,

(3.8)

where in the second step of the inequalities we have used that u− x ∈ ∂E(x) and v − y ∈ ∂E(y). If we

now choose z = y for the first inequality and z = x for the second, we have

E(y)− E(x) ≥ 〈u− x, y − x〉

E(x)− E(y) ≥ 〈v − y, x− y〉

adding both inequalities we have

0 ≥ 〈u− x+ y − v, y − x〉

0 ≥ 〈u− v, y − x〉+ ‖y − x‖2

〈u− v, x− y〉 ≥ ‖x− y‖2.

〈u− v, proxE(u)− proxE(v)〉 ≥ ‖proxE(u)− proxE(v)‖2.

For many common convex objective functions, the proximal operators is simple to compute and has

a closed-form expression.

• Quadratic functions

f(x) =
1

2
‖Au− b‖2, proxτf (v) = (I + τATA)−1(v − τb)
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• Euclidean norm

f(x) = ‖x‖ , proxτf (v) =

(1− τ/ ‖v‖)v if ‖v‖ ≥ τ

0 otherwise.

• `1-norm (cf. exercise sheet 3)

f(x) = ‖x‖1 ,
(
proxτf (v)

)
i

=


vi + τ if vi < −τ

0 if |vi| ≤ τ

vi − τ if vi > τ.

In the same way as we used the projection to generalize gradient descent to constrained minimization

problems, we use the proximal operator to generalize gradient descent to optimization problems of the

form

E(u) = E1(u) + E2(u),

where both E1 and E2 are proper, closed, and convex and satisfy

• E1 : Rn → R is L-smooth.

• E2 : Rn → R ∪ {∞} has an easy-to-evaluate proximal operator.

In this case, can generalize the projected gradient algorithm by taking gradient descent steps on E1 and

proximal steps on E2. This strategy is known as proximal gradient method.

Definition Proximal Gradient Method For a closed, proper, convex function E1, E2 : Rn → R∪{∞},
where E1 is differentiable, and given an initial point u0 ∈ Rn and a step size τ , the algorithm

uk+1 = proxτE2

(
uk − τ∇E1(uk)

)
, k = 0, 1, 2, . . . ,

is called the proximal gradient method or forward-backward splitting.

For a constant E2, the proximal gradient method reduces to gradient descent, while for E2 = δC it

reduces to projected gradient descent. The case we have not seen, constant E1, results in the proximal

point algorithm.

We can again prove analyze the convergence of the proximal gradient method as the fixed-point

iteration of the operator

G(u) = proxτE2
(u− τ∇E1(u)).

We do so by determining the conditions under which G is averaged or a contraction.

Theorem 56. For closed, proper, convex functions E1 and E2, with E1 L-smooth and having a minimizer

u∗ of E(u) = E1(u) + E2(u), the proximal gradient method with constant step size τ ∈ (0, 2
L ) converges

to u∗ with rate E(uk)− E(u∗) ∈ O(1/k).

Proof. The operator G is averaged for τ ∈ (0, 2
L ) because it is the composition of two averaged operators,

the gradient-descent operator G1(u) = u − τE1(u) and the proximal operator proxτE2
. Indeed, we have

already seen that if E1 is L-smooth closed, proper, convex, then G1 is averaged for τ ∈ (0, 2
L ). At the

same time, proxτE2
is averaged with α = 1

2 because it is firmly nonexpansive. The convergence rate

results from particularizing the analysis of the convergence rate of fixed-point iterations of an averaged

operator to the proximal gradient.
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As we have done with gradient descent and the projected gradient algorithms, we can obtain linear

convergence with some additional assumptions on the objective function. To this goal, we need to

determine under which conditions the proximal operator is not only nonexpansive but a contraction.

Theorem 57. If the proper, closed function E is m-strongly convex, then proxτE : Rn → Rn is a

contraction.

As the composition of a contraction with a nonexpansive mapping is a contraction, proxτE2
(u−τ∇E1)

is a contraction whenever (u− τ∇E1) or proxτE are a contraction. This condition translates into strong

convexity of E1 and E2.

Corollary 58. If E1 is L-smooth, τ ∈ (0, 2
L ), and either E1 or E2 is strongly convex, then the proximal

gradient method converges linearly, i.e., ‖uk − u∗‖22 ∈ O(ck) for some c < 1.

Proof. This is an immediate result of Banach fixed-point iteration theorem.



Chapter 4

Duality

Functional transforms can shed light into an optimization problem by presenting it from a different

perspective. In convex analysis, the conjugate and biconjugate of a function play this role.

4.1 Convex Conjugate

Definition Let E : Rn → R∪{∞} be any function, not necessarily convex, we define its convex conjugate

to be

E∗(p) = sup
u∈Rn

[〈u, p〉 − E(u)] .

As the name suggests, the convex conjugate of a function is convex, even when the function is not.

In fact, it is also closed.

Lemma 59. Convexity of the Convex Conjugate The convex conjugate

E∗(p) = sup
u∈Rn

(〈u, p〉 − E(u)) .

of any proper function E : Rn → R∪{∞} is convex. If the function is closed, its conjugate is also closed.

Proof. The convexity of E∗ results from its definition as a supremum. We can prove it, by proving the

convexity of its epigraph. Let (p, α) ∈ epi(E∗), (q, β) ∈ epi(E∗), by definition of epigraph we have

α ≥ sup
u∈Rn

[〈u, p〉 − E(u)] (4.1)

β ≥ sup
u∈Rn

[〈u, q〉 − E(u)] . (4.2)

Multiplying the first inequality by θ ∈ [0, 1] and the second by (1− θ) and adding them up, we obtain

θα+ (1− θ)β ≥ sup
u∈Rn

[〈u, θp〉 − θE(u)] + sup
u∈Rn

[〈u, (1− θ)q〉 − (1− θ)E(u)]

≥ sup
u∈Rn

[〈u, θp〉 − θE(u) + 〈u, (1− θ)q〉 − (1− θ)E(u)]

≥ sup
u∈Rn

[〈u, θp+ (1− θ)q〉 − E(u)]

which shows that θ(p, α) + (1 − θ)(q, β) ∈ epi(E∗). To show that it is closed, we will show that its

epigraph is the intersection of an aribraty number of closed convex sets epi(E∗) = {(p, α) ∈ Rn × R :

〈u, p〉 − E(u) ≤ α ∀u} = ∩uepiEu where Eu(·) = 〈u, ·〉 − E(u). Since each epiEu is closed, and any

arbitrary intersection of closed sets is closed, epi(E∗) is closed.

31
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We will mostly study convex conjugates of convex functions. Some of them are classic examples that

is useful to know instead of derive every single time.

• If E(u) = 1
2
‖u‖2, the optimality conditions of

sup
u
〈p, u〉 − 1

2
‖u‖2

show that the supremum is attained at û = p, where 〈p, û〉 − 1
2
‖û‖2 = 1

2
‖p‖2. This yields E∗(p) = 1

2
‖p‖2.

• If ‖ · ‖∗ is the dual norm of ‖ · ‖, the convex conjugate of E(u) = ‖u‖ is E∗(p) =

{
0 if ‖p‖∗ ≤ 1,

∞ else.

Recall the definition of the dual norm: given p ∈ Rn

‖p‖∗ = sup{〈p, u〉 : u ∈ Rn, ‖u‖ ≤ 1}.

As a result, if ‖p‖∗ > 1, there exists x ∈ Rn with ‖x‖ < 1 such that 〈x, p〉 > 1 and 〈p, x〉 − ‖x‖ > 0. Now,

define z = tx, we have

sup
u∈Rn

〈p, u〉 − ‖u‖ ≥ sup
t
〈p, tx〉 − ‖tx‖ = sup

t>0
t[〈p, x〉 − ‖x‖] =∞.

Conversely, if ‖p‖ ≤ 1, we have 〈p, u
‖u‖ 〉 ≤ 1 for all u, which implies 〈p, u〉 ≤ ‖u‖ for all u. Therefore u = 0

is the value that maximizes 〈p, u〉 − ‖u‖ with maximum value 0.

In particular, we have

– The conjugate of E(u) = ‖u‖2 is E∗(p) =

{
0 if ‖p‖2 ≤ 1,

∞ else.

– The conjugate of E(u) = ‖u‖1 is E∗(p) =

{
0 if ‖p‖∞ ≤ 1,

∞ else.

– The conjugate of E(u) = ‖u‖∞ is E∗(p) =

{
0 if ‖p‖1 ≤ 1,

∞ else.

• The convex conjugate of the indicator function of the unit ball E(u) =

{
0 if ‖u‖ ≤ 1,

∞ else.
is the dual

norm E∗(p) = ‖p‖∗. Indeed

sup
u∈Rn

〈p, u〉 − E(u) = sup
‖u‖≤1

〈p, u〉 = ‖p‖∗.

In particular, we have

– E(u) =

{
0 if ‖u‖2 ≤ 1,

∞ else.
leads to E∗(p) = ‖p‖2.

– E(u) =

{
0 if ‖u‖∞ ≤ 1,

∞ else.
leads to E∗(p) = ‖p‖1.

– E(u) =

{
0 if ‖u‖1 ≤ 1,

∞ else.
leads to E∗(p) = ‖p‖∞.

Now that we know some basic conjugates, it is useful to investigate how the conjugation affects

some basic operations like linear composition, scaling or affine transforms to increase our repertoire of

conjugates.

• Scalar multiplication :If E(u) = αẼ(u)

E∗(p) = sup
u
〈p, u〉 − αẼ(u) = α sup

u
〈 p
α
, u〉 − Ẽ(u) = αẼ∗(p/α).
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• Separable sum: If E(u1, u2) = E1(u1) + E2(u2)

E∗(p) = sup
p=(p1,p2)

〈p1, u1〉+ 〈p2, u2〉 − E1(u1)− E2(u2)

= sup
p1

〈p1, u1〉 − E(u1) + sup
p2

〈p2, u2〉 − E(u2)

= E∗1 (p1) + E∗2 (p2).

• Sum rule: If E1, E2 are closed, convex, proper and E(u) = E1(u) + E2(u)

E∗(p) = sup
p
〈p, u〉 − E1(u)− E2(u)

= sup
p=p1+p2

〈p1, u〉 − E1(u) + 〈p2, u〉 − E2(u)

= inf
p=p1+p2

sup
p1

〈p1, u〉 − E1(u) + sup
p2

〈p2, u〉 − E2(u)

= inf
p=p1+p2

E∗1 (p1) + E∗2 (p2).

Where we have used that

sup
p=p1+p2

F (p1, p2) = inf
p=p1+p2

sup
p1

sup
p2

F (p1, p2)

• Translation: If E(u) = Ẽ(u− b)

E∗(p) = sup
u
〈p, u〉 − Ẽ(u− b) = sup

u
〈p, b〉+ 〈p, u− b〉 − Ẽ(u− b)

= sup
u−b
〈p, b〉+ 〈p, u− b〉 − Ẽ(u− b)

= 〈p, b〉+ Ẽ∗(p).

• Additional affine functions: If E(u) = Ẽ(u) + 〈b, u〉+ a

E∗(p) = sup
u
〈p, u〉 − Ẽ(u)− 〈b, u〉 − a = sup

u
−a+ 〈p− b, u〉 − Ẽ(u)

= −a+ Ẽ∗(p− b).

4.2 Duality Theorems

Theorem 60 (Fenchel-Young Inequality). Let E be proper, convex and closed, u ∈ dom(E) ⊂ Rn,

and p ∈ Rn, then

E(u) + E∗(p) ≥ 〈u, p〉.

Equality holds if and only if p ∈ ∂E(u).

Proof. The inequality follows immediately from the definition of the conjugate

E(u) + E∗(p) = E(u) + sup
v
〈v, p〉 − E(v) ≥ E(u) + 〈u, p〉 − E(u) = 〈u, p〉.

To show the equality statement, we will show the remaining inequality

E(u) + E∗(p) ≤ 〈u, p〉,

or, in other words,

E(u) + 〈p, z〉 − E(z) ≤ 〈u, p〉, ∀z.
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Rewritten, the above is nothing but

E(z)− E(u)− 〈p, z − u〉 ≥ 0, ∀z,

which is simply the definition of the subgradient p ∈ ∂E(u).

Theorem 61 (Biconjugate). Let E : Rn → R ∪ {∞} be proper, convex and closed, then E∗∗ = E.

Proof. We’ll show an incomplete proof that only considers the relative interior but gives already a quick

intuition of why the statement makes sense. For the full proof, please check Rockafellar’s book Convex

Analysis, Theorem 12.2.

First of all, note that E∗∗(u) ≤ E(u) because

E∗∗(u) = sup
p
〈p, u〉 − E∗(p) = sup

p
〈p, u〉 − sup

v
[〈p, v〉 − E(v)] ≤ sup

p
〈p, u〉 − [〈p, u〉 − E(u)] = E(u).

If E is subdifferentiable at u, let q ∈ ∂E(u). Fenchel-Young inequality tells us that E(u) +E∗(q) = 〈u, q〉
and, by definition of the supremum, we have

E∗∗(u) = sup
p
〈p, u〉 − E∗(p) ≥ 〈q, u〉 − E∗(q) = E(u).

Combining both inequalities, we have E∗∗(u) = E(u).

This give us the first hint on how to reformulate a convex problem into a friendlier version: simply

changing E by its biconjugate E∗∗ and checking if it is in some way simpler to solve. There are many

ways to measure simplicity, a useful one is the subdifferential that appears in the optimality conditions

of the problem.

Lemma 62. Subgradient of convex conjugate Let E be proper, convex and closed, then the following

two conditions are equivalent:

• p ∈ ∂E(u)

• u ∈ ∂E∗(p)

Proof. Let p ∈ ∂E(u), by the Fenchel-Young Inequality we know that

E(u) + E∗(p) = 〈u, p〉.

On the other hand, E = E∗∗ such that

E∗∗(u) + E∗(p) = 〈u, p〉,

and the Fenchel-Young Inequality tells us that u ∈ ∂E∗(p). Similarly, u ∈ ∂E∗(p) implies p ∈ ∂E(u).

This let us prove an important property, that the convex conjugate of a strongly convex function is

smooth. This is important because it means that we can non-differentiable strongly convex problems

with a descent technique through its conjugate.

Theorem 63. Conjugation of strongly convex functions If E : Rn → R̄ is proper, closed and

m-strongly convex, then E∗ is proper, closed, convex and 1/m-smooth.

Proof. For a proper, closed, strongly convex function, the supremum in the definition of E∗ is attained.

To see this, let us re-write

max
u
〈u, p〉 − E(u) = −min

u
E(u)− 〈u, p〉
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Now the convexity of E let us substitute the minimum by an infimum

max
u
〈u, p〉 − E(u) = − inf

u
E(u)− 〈u, p〉 = sup

u
〈u, p〉 − E(u) = E∗(p).

The strong convexity of E also means that the minimum is unique. The optimality condition immediately

yields that this minimum is attained for p ∈ ∂E(u), i.e. for u ∈ ∂E∗(p). Since the optimal u is unique,

the subdifferential ∂E∗(p) is single valued for all p, which yields the differentiability of E∗.

As E is m-strongly convex, E − m
2 ‖ · ‖

2 is convex. As a result

〈u− v, p− q〉 ≥ m‖u− v‖2 ∀p ∈ ∂E(u), q ∈ ∂E(v),

or in other words

〈∇E∗(p)−∇E∗(q), p− q〉 ≥ m‖∇E∗(p)−∇E∗(q)‖2 ∀p, q.

Now, by Cauchy-Schwarz inequality we have

‖∇E∗(p)−∇E∗(q)‖‖p− q‖ ≥ 〈∇E∗(p)−∇E∗(q), p− q〉 ≥ m‖∇E∗(p)−∇E∗(q)‖2 ∀p, q

which implies 1
m -smoothness of E∗ as

‖∇E∗(p)−∇E∗(q)‖ ≤ 1

m
‖p− q‖ ∀p, q.

Theorem 64 (Fenchel’s Duality1). Let G : Rn → R ∪ {∞} and F : Rm → R ∪ {∞} be proper, closed,

convex functions and let there exist a u ∈ ri(dom(G)) such that Ku ∈ ri(dom(F )). Then

infu G(u) + F (Ku) ”Primal”

= infu supq G(u) + 〈q,Ku〉 − F ∗(q) ”Saddle point”

= supq infu G(u) + 〈q,Ku〉 − F ∗(q) ”Saddle point”

= supq −G∗(−K∗q)− F ∗(q) ”Dual”

Proof. Partial proof: Let us assume a minimum is attained at some û. Our assumptions let us apply the

sum rule of the subgradient to compute the optimality conditions of the primal problem

û ∈ argmin
u

G(u) + F (Ku) (4.3)

0 ∈ q +K∗p̂ q ∈ ∂G(û) p̂ ∈ ∂F (Kû) (4.4)

q ∈ −K∗p̂ û ∈ ∂G∗(q) Kû ∈ ∂F ∗(p̂) (4.5)

û ∈ ∂G∗(−K∗p̂) Kû ∈ ∂F ∗(p̂) (4.6)

If we know take û ∈ ∂G∗(−K∗p̂) and Kû ∈ ∂F ∗(p̂) and use it to write

0 = Kû−Kû ∈ −K∂G∗(−K∗p̂)− ∂F ∗(p̂)

1C.f. Rockafellar, Convex Analysis, Section 31
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we see that p̂ satisfies the optimality conditions of the dual problem p̂ ∈ arg maxp −G∗(−K∗p)− F ∗(p).
Moreover, the optimal solution pair (û, p̂) satisfies

Kû ∈ ∂F ∗(p̂) −K∗p̂ ∈ ∂G(û) (4.7)

Kû ∈ ∂F ∗(p̂) û ∈ ∂G∗(−K∗p̂) (4.8)

p̂ ∈ ∂F (Kû) û ∈ ∂G∗(−K∗p̂) (4.9)

p̂ ∈ ∂F (Kû) −K∗p̂ ∈ ∂G(û). (4.10)

This immediately give us the following alternative characterizations of the solution of our problem.

Corollary 65. Let the assumptions from Fenchel’s Duality Theorem hold. If there exists a pair (u, q) ∈
Rn × Rn such that one of the following four equivalent conditions are met

1. −K∗q ∈ ∂G(u), q ∈ ∂F (Ku),

2. −K∗q ∈ ∂G(u), Ku ∈ ∂F ∗(q),

3. u ∈ ∂G∗(−K∗q), q ∈ ∂F (Ku),

4. u ∈ ∂G∗(−K∗q), Ku ∈ ∂F ∗(q),

Then u solves the primal and q solves the dual optimization problem.


