
Chapter 1

Why Convex Optimization

1.1 Introduction

Optimization problems arise naturally in many computer vision and machine learning applications that

estimate pixel values, motions, shapes, or model parameters from input images, videos, range sensors, or

training data. By formalizing the problem into a concise mathematical form, we obtain an optimization

problem whose solution are the model parameters that best fit the observed data and our prior knowledge

of the physical world. The next step, finding a solution to the mathematical model, is far from trivial.

Most commercial optimization packages for general optimization are designed to interface with the

vision or learning model as black boxes. They can thus fit a large class of problems, in a poor manner,

because they use minimal assumptions on the structure or properties of the problem and results in poor

optimizations that do not converge to global optima but stationary points or local minima. We must

accept that, in general, optimization problems are unsolvable.

In many practical applications the process of creating a model takes a considerable amount of time

and effort. Therefore, it is important to understand the properties of the model and the computational

consequences of each decision. Very often we have to choose between a good model, which we cannot

solve and a bad model, which can be solved efficiently. What is better? Convex optimization models

are widespread, not because such models can describe our nonlinear world very well, but simply because

practitioners prefer to deal with approximate solvable models, predict the effects of the approximation

on the solution, and correct it rather than trying to solve a model without any guarantee for success.

The course discusses numerical methods for a large class of solvable optimization problems, namely

convex optimization problems, that are common in computer vision and machine learning. To apply the

optimization formulations successfully, it is necessary to be aware of some theory that explains what we

can and what we cannot do with optimization problems.

1.2 Limitations in General Optimization

Let us start by describing our optimization problem. Let u ∈ Rn be an n-dimensional real vector, C ⊂ Rn

be a subset of Rn, and E be a real-valued functions of u. We study different variants of the following

general minimization problem:

û ∈ arg min
u∈C

E(u) (1.1)

The function E : Rn → R is the objective function, while the set C is the feasible set. We consider

a minimization problem by convention, but we can also consider a maximization problem with −E as
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objective function.

There is a natural classification of the types of minimization problems that we will study: uncon-

strained problems where C = Rn, smooth problems where E is differentiable, and non-smooth problems

where E is not differentiable. We also distinguish different types of solutions to the minimization problem

Definition u? is a global solution of if E(u?) ≥ E(u) for all u ∈ C.

Definition u? is a local solution if there exists a neighborhood of u? of size ε > 0, B(u?, ε) ⊂ C such

that

E(u?) ≥ E(u) ∀u ∈ B(u?, ε).

The simplest goal of general optimization is to find a local minimum of a differentiable function. In

general, the global structure of such a function is not simpler than that one of a Lipschitz continuous

function.

Definition A function f : C ⊂ Rn → Rm is Lipschitz continuous with Lipschitz constant L if for all

x, y ∈ C

‖f(x)− f(y)‖2 ≤ L‖x− y‖2

A function f : C ⊂ Rn → Rm is locally Lipschitz continuous if for every x ∈ C there exists ε > 0

such that f|B(ε,x) is Lipschitz continuous

The majority of optimization methods are based on the idea of relaxation:

Definition We call the sequence {ak}∞k=0 a relaxation sequence if ak+1 ≤ ak ∀k ≥ 0.

For instance, to solve an unconstrained minimization problem of the form

min
u
E(u)

we construct a relaxation sequence {E(uk)} that satisfies E(uk+1) ≤ E(uk). Such a relaxation sequence

always improves the initial value of the objective function. Moreover, if E is bounded below on Rn, then

the sequence {E(uk)} converges. Formally:

Definition We say that a sequence {ak} ⊂ Rn converges to â ∈ Rn if for all ε > 0 there exists an k0 ∈ N
such that

‖ak − â‖ < ε ∀k ≥ k0.

To implement the idea of relaxation we use another fundamental principle of numerical analysis, the

approximation. The approximation in this case replace an initial complex objective function E by a

simplified one, which is close by its properties to the original. When the function is differentiable, we

usually apply local approximations based on derivatives of the objective function to create first- and

second- order Taylor approximations that results in linear and quadratic approximations. Let E(u) be

differentiable at u0, then for u ∈ Rn, we have

E(u) = E(u0) + 〈∇E(u0), u− u0〉+ o(‖u− u0‖) where lim
r→0

o(r)

r
= 0.

Function E(u;u0) = E(u0) + 〈∇E(u0), u− u0〉 is a linear approximation of E in a neighborhood of u.

Given an initial estimate of the minimizer u0, we can then use this linear approximation to reduce

the value of E(u) in a neighborhood of u0. In particular we can decide to iteratively step in the direction
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of maximum descent of the approximation E(u;u0), that is

u1 = u0 − τ∇E(u0)

u2 = u1 − τ∇E(u1)

· · ·

uk+1 = uk − τ∇E(uk).

To ensure convergence, the step size τ > 0 depends on the Lipschitz constant of E. This gives us a very

simple algorithm know as gradient descent. We will see in this course that under certain conditions, the

algorithm creates a relaxation sequence that decreases the value of the objective function E(uk+1) <

E(uk) and converges to a point û ∈ Rn. This a point then satisfies û = û− τ∇E(û)⇒ ∇E(û) = 0. This

is a necessary condition for optimality, as the next theorem shows.

Theorem 1. First-order optimality condition. Let u? be a local minimum of differentiable function

E(u). Then ∇E(u?) = 0.

Proof. Since u? is a local minimum of E(u), then there exists r > 0 such that for all v with ‖v−u?‖ ≤ r,
we have E(v) ≥ E(u?). Since E is differentiable, this implies that

E(v) = E(u?) + 〈∇E(u?), v − u?〉+ o(‖v − u?‖) ≥ E(u?).

Thus, for all s, ‖s‖ = 1, we have 〈∇E(u?), s〉 ≥ 0. Consider the directions s and −s, we get ∇E(u?) =

0.

Note that we have proved only a necessary condition of a local minimum. The points satisfying this

condition are called the stationary points of function. In order to see that such points are not always

the local minima, it is enough to look at function E(u) = u3. The optimality condition E′(u) = 3u2 = 0

results in u? = 0 even though the function is decreasing for any u < 0 and can thus not have a minimum

at zero. The point u? = 0 is a stationary point, not a maximum or minimum.

To discern between local minima and stationary points of a function, let us introduce the second-order

approximation. Let function E(u) be twice differentiable with Hessian ∇2E(u) at u. Then

E(v) = E(u) + 〈∇E(u), v − u〉+
1

2
〈∇2E(u)(v − u), v − u〉+ o(‖v − u‖2).

The function E(v;u) = E(u)+〈∇E(u), v−u〉+ 1
2 〈∇

2E(u)(v−u), v−u〉 is the quadratic (or second-order)

approximation of function E at u. Note that the Hessian is a symmetric matrix that can be seen as a

derivative of the vector function ∇E. As a result, using a linear approximation to each component of

∇E, we have

∇E(v) = ∇E(u) +∇2E(u)(v − u) + o(‖v − u‖).

Using the second-order approximation, we can write down the second- order optimality conditions.

Theorem 2. Second-order optimality condition Let u? be a local minimum of twice differentiahte

function E(u). Then ∇E(u?) = 0 and ∇2E(u?) is symmetric and positive semi-definite, that we denote

by ∇2E(u?) � 0.

Proof. Since u? is a local minimum of function E, there exists r > 0 such that

E(u) ≥ E(u?) ∀u with ‖u− u?‖ < r.

The first order optimality condition gives us ∇E(u?) = 0 and, as a result

E(u) = E(u?) + 〈∇2E(u?)(v − u?), v − u?〉+ o(‖y − u?‖2) ≥ E(u?).

Thus, 〈∇2E(u?)(v−u?), v−u?〉 ≥ 0. Letting s = v−u we have 〈∇2E(u?)s, s〉 ≥ 0, which implies positive

semi-definiteness.
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This second-order characteristic of a local minimum is also sufficient.

Theorem 3. Let function E(u) be twice differentiable on Rn and let u? satisfy ∇E(u?) = 0 and

∇2E(u?) � 0. Then u? is a strict local minimum of E.

Proof. In a small neighborhood of u?, E(u) can be represented as

E(u) = E(u?) + 〈∇2E(u?)(u− u?), u− u?〉+ o(‖u− u?‖2).

Since limr→0
o(r)
r = 0, there exists a value r̄ such that for all r ∈ [0, r̄] we have

|o(r)| ≤ r

4
λ1,

where λ1 > 0 is the smallest eigenvalue of matrix ∇2E(u?). As ∇2E(u?) is symmetric and positive

definite, it has positive eigenvalues λ1, λ2, . . . , λn > 0 and orthogonal eigenvectors q1, q2, . . . qn, such that

∇2E(u?) =
∑

1≤i≤n λiq
T
i qi and ‖qTi v‖ = ‖v‖ for all v ∈ Rn. As a result,

E(u) ≥ E(u?) +
λ1

2
‖u− u?‖2 + o(‖u− u?‖2) ≥ E(u?) +

λ1

4
‖u− u?‖2 ≥ E(u?). (1.2)

For general optimization problems, we thus require second-order differentiablity to formulate necessary

and sufficient optimality conditions. The optima described by these conditions is, moreover, only local.

In most applications of computer vision and machine learning the objective functions are not differ-

entiable and the general optimality conditions that we have derived are meaningless. Even in the rare

cases where second-order derivatives exists, computing the Hessian is not feasible because the size of

the problem is too large. For these reasons, we resort to the field of convex optimization. In convex

optimization the objective function does not need to be differentiable, optimality conditions that do not

assume differentiablity are not only necessary but sufficient, and the algorithms scale well with the size

of the problem.



Chapter 2

Convex Analysis

2.1 Convex Optimization

We start this section with the unconstrained minimization problem

min
u∈Rn

E(u). (2.1)

In the general situation we cannot do too much: even when the function is smooth, the gradient method

converges only to a stationary point of function E, second-order differentiablity is necessary to discern

local minima from stationary points, and the Hessian matrix necessary to detect if a point is a local

optimum is usually computationally too expensive to compute. To make the problem tractable we

introduce some assumptions on function E.

As the main cause of our trouble is the weakness of the first-order optimality condition, we call for the

following additional property: for any E differentiable, the first-order optimality condition is necessary

and sufficient for a point to be a global solution to the unconstrained minimization problem. This is what

convex functions guarantee.

Definition A function E : Rn → R is convex if and only if for any u, v ∈ Rn and θ ∈ [0, 1]

E(θu+ (1− θ)v) ≤ θE(u) + (1− θ)E(v).

E is strictly convex if the inequality is strict for all θ ∈ (0, 1), v 6= u.

The definition of convex functions implicitly assumes that it is possible to evaluate the function at

any point of the segment

[u, v] = {z = θu+ (1− θ)v : 0 ≤ θ ≤ 1}.

As a result, it is natural to consider a set that contains the whole segment between any two points in the

set. Such sets are called convex.

Definition Convex Sets. The set C is convex if for any u, v ∈ C and θ ∈ [0, 1], θu+ (1− θ)v ∈ C.

We can then include this notion in the definition of convex functions with restricted domain.

Definition The domain of a function E : Rn → R is the set

dom(E) = {u ∈ Rn : E(u) <∞}

We can now extend the definition of convexity to functions.
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Definition Convex Function. The function E : Rn → R = R ∪ {∞} is convex if

• its domain dom(E) is a convex set.

• For all u, v ∈ dom(E) and all θ ∈ [0, 1] it holds that

E(θu+ (1− θ)v) ≤ θE(u) + (1− θ)E(v).

E is strictly convex if the inequality is strict for all θ ∈ (0, 1), v 6= u.

In the following we assume that the domain of E is not empty, that is, the function E is proper.

Definition Function E : Rn → R is proper if its domain is not empty.

This course will investigate convex minimization problems, they are characterized by the form

û ∈ arg min
u∈C

E(u), (2.2)

where C is a convex set and E is a convex function. To write such a problem in our familiar unconstrained

optimization form, we we define the extended real-valued function Ẽ by introducing the constraint

u ∈ C into the domain of the original energy function E:

Ẽ :Rn → R := R ∪ {∞}

u 7→ Ẽ(u) =

{
E(u) if u ∈ C,
∞ else.

and re-write (2.2) as

û ∈ arg min
u∈Rn

Ẽ(u).

2.2 Convex Sets

We have already seen some convex sets as a result of convex functions

Lemma 4. If E is a convex function, then for any β ∈ R, its level set

{u : E(u) ≤ β}

is either convex or empty.

Proof. Let u, v ∈ dom(E) with E(u) ≤ β and E(v) ≤ β, by convexity of E we have θu+(1−θ)v ∈ dom(E)

and

E(θu+ (1− θ)v) ≤ θE(u) + (1− θ)E(v) ≤ θβ + (1− θ)β = β.

Lemma 5. Let E be a convex function, then its epigraph

epi(E) = {(u, β) : E(u) ≤ β}

is a convex set.

Proof. Let (u, α), (v, β) ∈ epi(E), then u, v ∈ dom(E) with E(u) ≤ α and E(v) ≤ β, by convexity of E

we have θu+ (1− θ)v ∈ dom(E) and

E(θu+ (1− θ)v) ≤ θE(u) + (1− θ)E(v) ≤ θα+ (1− θ)β

and θ(u, α) + (1− θ)(v, β) ∈ epi(E).
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To determine if a set is convex, a few properties are useful.

Lemma 6. Let C ⊂ Rn, D ⊂ Rm be convex sets and A : Rn → Rm be a linear operator, then the

following sets are convex

• C ∩D

• C +D = {u = x+ y : x ∈ C, y ∈ D}

• Affine image A (C) = {u ∈ Rm : u = A (x), x ∈ C}

• Inverse affine image A −1(D) = {v ∈ Rn : A (v) ∈ D}

Proof. Left as exercise

We can now show that the following sets are convex

• Half-space {u ∈∈ Rn : 〈a, u〉 ≤ } is convex since linear functions are convex.

• Polytope {u ∈∈ Rn : 〈ai, u〉 ≤ bi} is convex as an intersection of convex sets.

• Ellipsoid {u ∈∈ Rn : 〈Au, u〉 ≤ 1 with A � 0} because the function 〈Au, u〉 is a convex function.

2.3 Convex Functions

In order to determine if a function is convex, it is useful to know some equivalent definitions of convexity.

Theorem 7. Convexity and Epigraphs. A proper function E : Rn → R is convex if and only if its

epigraph is convex

Proof. We have already seen one direction, the other is an exercise

Lemma 8. Jensen’s Inequality. For any convex function E, u1, . . . , um ∈ dom(E) and coefficients

θ1, . . . , θm ≥ 0 such that
∑m
i=1 θiui = 1 it holds

E(

m∑
i=1

θiui) ≤
m∑
i=1

θiE(ui)

.

Proof. By induction on m. The case m = 2 is a result of the definition.

Corollary 9. For any u a convex combination of u1, . . . , um ∈ dom(E), E(u) ≤ max
1≤i≤m

E(ui)

Corollary 10. Let ∆ = Conv{u1, . . . , um} be the convex hull of u1, . . . , um, then

max
u∈∆

E(u) = max
1≤i≤m

E(ui)

Lemma 11. Function E : C → R is convex if and only if C is convex and for all u, v ∈ C, β ≥ 0 such

that u+ β(u− v) ∈ C it holds that

E(u+ β(u− v)) ≥ E(u) + β(E(u)− E(v))
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Proof. Let E be convex, we first prove the alternative definition. Given β > 0 define θ = β
β+1 ∈ (0, 1]

and x = u+ β(u− v) such that

u =
1

1 + β
(x+ βv = (1− θ)x+ θv

by convexity of E,

E(u) ≤ (1− θ)E(x) + θE(v) =
1

1 + β
E(u+ β(u− v)) +

β

1 + β
E(v)

(1 + β)E(u)− βE(v) ≤ E(u+ β(u− v))

Let us now prove that this alternative definition implies convexity. Given any u, v ∈ domE, θ ∈ [0, 1],

define β = 1−θ
θ and x = θu+ (1− θ)v such that

u =
1

θ
(x− (1− θ)v) = x+ β(x− v)

the inequality reads

E(u) = E(x+ β(x− v)) ≥ E(x) + β[E(x)− E(v)]

E(u) ≥ (1 + β)E(x)− βE(v) =
1

θ
E(x)− 1− θ

θ
E(v)

θE(u) + (1− θ)E(v) ≥ E(θu+ (1− θ)v)

Theorem 12. Monotonicity of the gradient Let E : Rn → R be proper, and continuously differen-

tiable at u ∈ dom(E). Then E is convex if and only if for any u, v ∈ dom(E)

E(v) ≥ E(u) + 〈∇E(u), v − u〉.

Proof. Given u, x ∈ dom(E), and θ ∈ [0, 1], let uθ = θu+ (1− θ)v. If E is continuously differentiable and

satisfies the theorem’s inequality, we have

E(uθ) ≥ E(v) + 〈∇E(uθ), v − uθ〉 = E(v) + θ〈∇E(uθ), v − u〉

E(uθ) ≥ E(u) + 〈∇E(uθ), u− uθ〉 = E(u)− (1− θ)〈∇E(uθ), v − u〉.

Multiplying the first inequality by 1 − θ, the second by θ, and adding the results, we get the inequality

that defines a convex function E(θu+ (1− θ)v) ≤ θE(u) + (1− θ)E(v).

We now prove that a convex and continuously differentiable function satisfies the theorem’s inequality.

Given u, v ∈ dom(E), as E is convex for any θin[0, 1]

E(v) ≥ 1

1− θ
[E(uθ)− θE(u)] = E(u) +

1

1− θ
[E(uθ)− E(u)] = E(u) +

1

1− θ
[E(θu+ (1− θ)v)− θE(u)]1.

(2.3)

As E is differentiable, the limit when θ tends to 1 exists and we get E(v) ≥ E(u) + 〈∇E(u), v − u〉.

2.3.1 Necessary and Sufficient Optimality Conditions

Theorem 13. Let E : Rn → R be convex. Any local minimum of E is global.
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Proof. Let u? be a global minimum of E and ū a local minimum that is not global, that is, E(u?) < E(ū).

By definition of local minimum, there exists an ε-ball centered at ū, B(ū, ε), such that E(v) ≥ E(ū) for

any v ∈ B(ū, ε). As u?, ū ∈ dom(E) convex, θū+ (1− θ)u? ∈ dom(E) and

E(θū+ (1− θ)u?) ≤ θE(u?) + (1− θ)E(ū) < E(ū)

As θ tends to 1, θū+ (1− θ)u? ∈ B(ū, ε) and this contradicts the definition of ū as local minimum.

When the function is differentiable, we can now prove that first-order optimality conditions are suffi-

cient.

Theorem 14. If E : Rn → R is continuously differentiable function with ∇E(u?) = 0 then u? is the

global minimum of E(x).

Proof. As ∇E(u?) = 0, the inequality

E(v) ≥ E(u?) + 〈∇E(u?), v − u?〉 ∀v ∈ dom(E)

gives us the condition E(v) ≥ E(u?) that characterizes a global minimum.

When the objective function is two-times differentiable, we can also characterize convexity in terms

of the Hessian.

Theorem 15. Two times continuously differentiable function E : Rn → R is convex if and only for any

u ∈ Rn we have ∇2E(u) � 0.

Proof. This is part of the exercise sheet.

2.3.2 Analytic Properties of Convex Functions

The behavior of convex functions at the boundary of their domain can be out of control. To prevent this

case, we ask the functions to be closed.

Definition Closed convex function. A convex function is closed if its epigraph is closed.

Lemma 16. Property If E is convex and closed, all its level sets are closed.

Proof. For each β, the level-set {u : E(u) = β} = epi(E) ∩ {(x, t) : t = β} can be described

as the intersection of the epigraph of E, which is closed and convex, and the closed and convex set

{(x, t) : t = β}.

If E is convex and continuous and its domain dom(E) is closed, then E is a closed function. The

converse is not true, a closed convex function is not necessarily continuous. Consider the following

examples

• E(u) = 1
u is convex, has an open domain dom(E) = R++ = {u ∈ R : u > 0}, but is closed because

its epigraph is {(u, t) ∈ R× R++ : 1
t ≤ u}

• Function E(u) = ‖u‖, where ‖ · ‖ is any norm, is closed and convex as a result of the triangle

inequality and homogeneity properties that define any norm:

‖θu+ (1− θ)v‖ ≤ ‖θu‖+ ‖(1− θ)‖v‖ = |θ|‖u‖+ |1− θ|‖‖v‖ = θ‖u‖+ (1− θ)‖‖v‖

The norms more common in computer vision and machine learning are the `p norms

‖u‖ =

(
n∑
i=1

|ui|p
) 1

p

u ∈ Rn
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– When we omit the subscript, we describe the Euclidean norm: |u| =
√∑n

i=1 u
2
i

– the non-differentiable `1 norm ‖u‖1 =
∑n
i=1 |ui|

– the `∞ norm ‖u‖∞ = max1≤i≤n |ui|

• the function

E(x, y) =

0 if x2 + y2 < 1

φ(x, y) if x2 + y2 = 1

with domain domE = B2(0, 1) is closed and convex for any φ(x, y) > 0 defined on the unit circle, the

boundary of the function domain. Imposing that the function is closed, which results in φ(x, y) = 0,

ensures that the function is well-behaved also on the boundary of its domain.

The behavior of convex function at the boundary of their domain can be disappointing, but their

behavior in the interior of its domain is very simple.

Theorem 17. Let function E : C ⊂ Rn → R be convex and u ∈ int dom(E) then E is locally bounded at

u.

Proof. Let us choose ε > 0 such that u± εei ∈ int dom(E) i = 1, . . . , n, where ei is the i-th coordinate

vector of Rn and define ε̂ = ε√
n

. We have

B(u, ε̂) ⊂ ∆ = Conv{u± εei i = 1, . . . , n}.

From the corollary to Jensen’s inequality, we find a local bound M to E

M = max
v∈B(u,ε̂)

E(v) ≤ max
v∈∆

E(v) ≤ max
1≤i≤n

E(u± εei)

Theorem 18. Continuity of Convex Functions If E : Rn → R ∪ {∞} is convex, then E is locally

Lipschitz (and hence continuous) on int(dom(E)).

Proof. Let B(u0, ε) ⊂ dom(E) and M = supu∈B(u0,ε) E(u) <∞.

Consider v ∈ B(u0, ε), v 6= u0 and define

α =
1

ε
‖v − u0‖z = u0 +

1

α
(v − u0)

It is clear that ‖z − u0‖ = ε, α ≤ 1, and v = αz + (1− α)u0. By convexity of E then

E(v) ≤ αE(z) + (1− α)E(u0) ≤ E(u0) + α(M − E(u0)) = E(u0) +
M − E(u0)

ε
‖v − u0‖

Now define y = u0 + 1
α (u0 − v) with ‖y − u0‖ = ε and v = u0 + α(u0 − y). We have

E(v) ≥ E(u0) + α(E(u0)− E(y)) ≥ E(u0)− α(M − E(u0)) = E(u0)− M − E(u0)

ε
‖v − u0‖

As a result of the 2 inequalities

|E(v)− E(u)| ≤ M − E(u0)

ε
‖v − u0‖
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2.3.3 Examples of Convex Functions

The next statements significantly increases our possibilities of constructing convex functions.

Lemma 19. Given a closed convex function φ and a linear operator A : Rm → Rn, then E(u) = φ(A (u))

is closed and convex with

dom(E) = {u ∈ Rm : A (u) ∈ dom(φ)}.

Proof. Let A (u) = Au+ b = x ∈ dom(φ) and A (v) = Av + b = y ∈ dom(φ), then by convexity of φ for

any θ ∈ [0, 1] we have θx+ (1− θ)y ∈ dom(φ) and

E[θu+(1−θ)v] = φ[A (θu+(1−θ)v)] = φ[θ(Au+b)+(1−θ)(Av+b)] ≤ θφ(Au+b)+(1−θ)φ(Av+b) = θE(u)+(1−θ)E(v).

This proves convexity of E. The closedness of its epigraph follows from continuity of the linear operator

A .

Lemma 20. Given two closed and convex function E1, E2 and α1, α2 > 0, then E = α1E1 + α2E2 is

closed and convex with dom(E) = dom(E1) ∩ domE2.

Proof. Let u, v ∈ dom(E1) ∩ domE2 and θ ∈ [0, 1], by convexity of each E1, E2 we have

α1E1(θu+ (1− θ)v) + α2E2(θu+ (1− θ)v) ≤ α1θE1(u) + α1(1− θ)E(v) + α2θE1(u) + α2(1− θ)E(v)

= θ[α1E1(u) + α2E2(u)] + (1− θ)[α1E1(v) + α2E2(v).

(2.4)

This proves the convexity of E, to prove that it is closed we consider a sequence {(uk, tk)} ∈ epi(E) that

satisfies

α1E1(uk) + α2E2(uk) ≤ tk lim
k→∞

uk = ū ∈ dom(E) lim
k→∞

tk = t̄ (2.5)

Since E1, E2 are closed, they are lower semi-continuous, and

inf lim
k→∞

E1(uk) ≥ E1(ū) inf lim
k→∞

E2(uk) ≥ E2(ū) (2.6)

and

t̄ = lim
k
tk ≥ inf lim

k→∞
α1E1(uk) + inf lim

k→∞
α2E2(uk) ≥ α1E1(ū) + α2E2(ū) (2.7)

and (ū, t̄) ∈ epi(E).

Lemma 21. Given two closed and convex function E1, E2, then E(u) = max{E1(u), E1(u)} is closed

and convex with dom(E) = dom(E1) ∪ domE2.

Proof. The epigraph

epi(E) = {(u, t) : u ∈ dom(E1) ∩ dom(E2), E1(u) ≤ t, E2(u) ≤ t} = epi(E1) ∩ epi(E2)

is the intersection of two closed convex sets and it is thus closed and convex.

Theorem 22. Let D be some set, not necessarily convex or finite dimensional, and E(u) = supy∈C φ(u, y)

such that for each y ∈ D, φ(u, y) is closed and convex in u. Then E is a closed and convex function with

domain

dom(E) = {u ∈ ∩y∈Ddom(φ(·, y)) : ∃γ ∈ R s.t. φ(u, y) ≤ γ ∀y ∈ D}
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Proof. If u belongs to {u ∈ ∩y∈Ddom(φ(·, y)) : ∃γ ∈ R s.t. φ(u, y) ≤ γ ∀y ∈ D}, then E(u) <∞ and

u ∈ dom(E). If u does not belong to this set, then there exists a sequence {yk} such that φ(u, yk)→∞
and u does not belong to dom(E).

(u, t) ∈ epi(E) if and only if for all y ∈ D, we have u ∈ dom(φ(·, y)) and φ(u, y) ≤ t. As a results

epi(E) = ∩y∈Depi(φ(·, y)) is closed and convex as the intersection of closed and convex sets.

We can now easily show that the next functions are convex:

• Linear function E(u) = α+ 〈a, u〉 is convex.

• For any matrix A be symmetric and positive semi-definite, the quadratic function E)u) = α +

〈a, u〉+ 〈a,Au〉 is convex because ∇2E(u) = A � 0.

• The following 1-dimensional are convex

E(u) = exp(u)

E(u) = |u|p p > 1

E(u) = |x| − log(1 + |x|)

• As a consequence, the following multi-dimensional functions are convex

E(u) =

n∑
i=1

exp(α+ 〈u, ai〉)

E(u) = |〈u, ai〉 − bi|p p > 1

• The function E∗(y) = supu∈dom(E) 〈u, y〉 − E(u) is convex.

2.4 Existence and Uniqueness of Minimizers

It only makes sense to try to solve an optimization problem if it has a solution. Specially, if the solution

is the limit of a relaxation sequence that we need to compute with a costly iterative algorithm that might

never converge. To show that a convex problem has a minimizer, we will see that it satisfies the necessary

conditions to frame the problem in a more the general theoretical setting of lower semi-continuity. This

section explains the tools from this general setting that we will need.

Definition Lower semi-continuity. A function E : Rn → R is lower semi-continuous (l.s.c.), if for all

u it holds that

lim inf
v→u

E(v) ≥ E(u).

Theorem 23. Let E : Rn → R be l.s.c. and let there exist an α such that the sublevelset

{u ∈ Rn | E(u) ≤ α}

is nonempty and bounded, then there exists

û ∈ arg min
u
E(u).

Proof. Remember that the infimum is the largest lower bound on all possible values of E(u) and consider

a sequence (uk)k such that E(uk)→ infuE(u).

We distinguish two cases: For α = infuE(u) the non-emptyness of Sα yields the assertion. For α >
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infuE(u) it holds that from some sufficiently large k0 on, we will have uk ∈ Sα. Since Sα is bounded

there exists a convergent subsequence ukl → ū. Due to the lower semi-continuity we find

inf
u
E(u) = lim

k→∞
E(uk) = lim

l→∞
E(ukl) ≥ E(ū).

Since by definition infuE(u) ≤ E(ū) we obtain equality and hence there exists ū ∈ argminuE(u).

Theorem 24. Equivalence of l.s.c. and closedness. For E : Rn → R the following two statements

are equivalent

• E is lower semi-continuous (l.s.c.)

• E is closed (its epigraph is closed)

Proof. Let E be closed and assume that E is not l.s.c.Then there exists a point u0 and a sequence (uk)k

with limk uk = u0 such that

lim inf
k

E(uk) < E(u0).

In particular, there exists α ∈ R and a subsequence (ukl)kl such that

E(ukl) ≤ α < E(u0) ∀k (2.8)

Obviously, (ukl , α) ∈ epi(E) for all kl and (ukl , α) → (u0, α), but according to (??) (u0, α) /∈ epi(E),

which contradicts the closedness of E.

To prove the other direction of the claim, let E be l.s.c. and assume that E is not closed. Then there

exists a sequence (uk, αk) ∈ epi(E) with (uk, αk)→ (u0, α0) /∈ epi(E). We find

lim inf
k

E(uk) ≤ lim
k
αk = α0 < E(u0).

On the other hand, due to E being l.s.c. we have E(u0) ≤ lim infk E(uk), which is a contradiction.

2.4.1 Existence of Minimizers of Convex Functions

Definition Coercivity. A function E : Rn → R∪{∞} is called coercive if E(vn)→∞ for all sequences

(vn)n with ‖vn‖ → ∞.

It is easy to proof by contradiction, that coercivity implies existence of a bounded sublevelset. We

have now all the tools to prove existence of minimizers of convex functions.

Theorem 25. Existence of a Minimizer Let E : Rn → R be convex and coercive, then an element

û ∈ arg minuE(u) exists.

Proof. As dom(E) = Rn and E convex, E is continuous. Similarly, as E is coercive, there exists a non-

empty bounded sublevelset, and we can apply the previous theorem on the existence of minimizers for

general lower semi-continuous functions.

Theorem 26. Uniqueness. If E : Rn → R is strictly convex, then there exists at most one local

minimum which is the unique global minimum.

Proof. Assume there are 2 global minima u, v with u 6= v, E(u) = E(v), then any θ ∈ [0, 1] we have

E(θu+ (1− θ)v) < θE(u) + (1− θ)E(v),

which contradicts the definition of u, v as global minima.
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2.5 Subdifferentials

2.5.1 Supporting Hyperplanes

Up to now we were describing properties of convex functions in terms of function values or their gra-

dients. When the function is not differentiable, we need to define a direction that acts as the gradient

of differentiable functions that points onto the direction of maximum ascent. In convex analysis such

directions are defined by supporting hyperplanes.

Definition Let C be a convex set. We say that hyperplane

H (g, γ) = {u ∈ Rn : 〈g, u〉 = γ, g 6= 0}

is supporting to C if any u ∈ C satisfies 〈g, u〉 ≤ γ.

We say that the hyperplane H (g, γ) separates a point u0 from C if

〈g, u〉 ≤ γ ≤ 〈g, u0〉 ∀u ∈ C.

Now we can enunciate two separation theorems necessary to define gradient-like directions of maximum

ascent or descent for non-differentiable functions.

Theorem 27. Separating Hyperplane Theorem Let C be a closed convex set and u0 /∈ C. Then

there exists a hyperplane H (g, γ) that strictly separates u0 from C.

Proof. See Boyd and Vandenberghe, Convex Optimization Theory, pp 46–49.

The next separation theorem deals with boundary points of convex sets.

Theorem 28. Supporting Hyperplane Theorem Let C be a closed convex set and u0 in the boundary

of C. Then there exists a hyperplane H (g, γ) supporting to C and passing through u0.

Proof. See Boyd and Vandenberghe, Convex Optimization Theory, pp 50–51.

2.5.2 The Subdifferential

We now have all the tools to introduce the notion of subdifferential that extends the gradient to non-

differentiable functions.

Definition Subdifferential. Let E : Rn → R be convex, the subdifferential of E at u is

∂E(u) = {p ∈ Rn | E(v)− E(u)− 〈p, v − u〉 ≥ 0, ∀v ∈ Rn}

• Elements of ∂E(u) are called subgradients.

• If ∂E(u) 6= ∅, we call E subdifferentiable at u.

• By convention, ∂E(u) = ∅ for u /∈ dom(E).

The subdifferential ∂E is necessary because subgradients are not unique. Consider for example a

function as friendly-looking as the absolute value at zero:

∀g ∈ [−1, 1], E(u) = |u| ≥ gu = E(0) + 〈g, u− 0〉

As a result, the subdifferential at 0 is the interval ∂E(0) = [−1, 1]. In general ∂E(u) is a set. Form its

definition as a set of linear constraints, we can easily see that it is closed and convex, in this case the

interval [−1, 1].
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2.5.3 Subdifferentiablity and Convexity

The subdifferentiability of a function is important because it implies its convexity.

Theorem 29. If for any u ∈ dom(E) the subdifferential ∂E(u) is non-empty, then E is a convex function.

Proof. Given u, v ∈ dom(E), and θ ∈ [0, 1], let uθ = θu + (1 − θ)v. As the subdifferential ∂E(uθ is

non-empty, we can pick g ∈ ∂E(uθ satisfying

E(uθ) ≥ E(v) + 〈g, v − uθ〉 = E(v) + θ〈g, v − u〉

E(uθ) ≥ E(u) + 〈g, u− uθ〉 = E(u)− (1− θ)〈g, v − u〉.

Multiplying the first inequality by 1 − θ, the second by θ, and adding the results, we get the inequality

that defines a convex function E(θu+ (1− θ)v) ≤ θE(u) + (1− θ)E(v).

The converse statement is also true.

Theorem 30. If E is a closed convex function and u ∈ int(dom(E)), then ∂E(u) is a non-empty bounded

set.

Proof. Note that the point (E(u), u) belongs to the boundary of epi(E), which is convex. As a result,

there exists a hyperplane H = (g, γ) supporting to epi(E) at (E(u), u):

γτ + 〈g, u〉 ≤ γE(u) + 〈g, u〉 ∀(u, τ) ∈ epi(E)

Without loss of generality, we can assume ‖g‖2 + γ2 = 1. We can determine the sign of γ by checking

the inequality for any point in the epigraph. In particular for any τ ≥ E(u), we have (u, τ) ∈ epi(E) that

results in γ > 0.

To find a subgradient p ∈ ∂E(u), we will use that a convex function is locally upper bounded in the

interior of its domain. That is, there is some ε > 0,M > 0 such that B(u, ε) ⊂ dom(E) and

E(v)− E(u) ≤M‖v − u‖ ∀v ∈ B(u, ε)

For any v from this ball, the supporting hyperplane equation reads

〈g, v − u〉 ≤ γ(E(v)− E(u)) ≤ γM‖v − u‖

In particular, if we choose v = u+ εg we get ‖g‖2 ≤Mγ‖d‖. Plugging now the condition ‖g‖2 + γ2 = 1

we get

γ ≥ 1√
1 +M2

.

If we choose p = g
γ we obtain

E(v) ≥ E(u) + 〈p, v − u〉 ∀v ∈ dom(E)

and p is a subgradient of E at u. Finally, to show that the subdifferential is bounded we assume that

p 6= 0 and consider the point v = u+ ε p
‖p‖ such that

ε‖p‖ = 〈p, v − u〉 ≤ E(v)− E(u) ≤M‖v − u‖ = Mε

Thus, ∂E(u) is bounded by M .

The conditions of this theorem cannot be relaxed. For instance, the function E(u) = −
√
u is convex

and closed in its domain {u : u ≥ 0}, but its subdifferential does not exists at the only point (0) that is

not in its interior. This is just another reminder that considering the interior of the domain for convex

functions is important.

To conclude this section, let us point out to the property of the subgradients that makes it important

for optimization.
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Theorem 31. Optimality Condition. Let 0 ∈ ∂E(û), then û ∈ arg minu∈Rn E(u)

Proof. If 0 ∈ ∂E(û), by definition of the subgradient

E(u) ≥ E(û) + 〈0, u− û〉 = E(û) ∀u ∈ dom(E)

and we conclude that û is a minimizer of E. On the other hand, if E(u) ≥ E(û) for all u ∈ dom(E), then

0 satisfies the condition of subgradient of E at û.

2.5.4 Alternative Definitions of Subgradients

The supporting hyperplane theorem appears on the proof of the “subdifferentiability” theorem because

subgradients can be interpreted in terms of supporting hyperplanes.

Theorem 32. Geometric interpretation of Subgradients. Any subgradient p ∈ ∂E(u) represents

a non-vertical supporting hyperplane to epi(E) at (u,E(u))

Proof. Let p ∈ ∂E(u). Then, by definition of subgradient,

E(v)− E(u)− 〈p, v − u〉 ≥ 0 ∀v ∈ Rn

α− E(u)− 〈p, v − u〉 ≥ 0 ∀(v, α) ∈ epi(E)〈[
−p
1

]
,

[
v

α

]
−

[
u

E(u)

]〉
≥ 0 ∀(v, α) ∈ epi(E).

As a result, the non-vertical hyperplane H = (g, γ) with g = (−p, 1) and γ = 〈p, u〉 − E(u) supports

epi(E) at (u,E(u)).

Apart from this geometric interpretation, it is useful to compute the subdifferential of a differentiable

function to show how it is a generalization of the gradient. The next theorem does that.

Theorem 33. Subdifferential of of Differentiable Functions. Let the convex function E : Rn →
R ∪ {∞} be differentiable at u ∈ int(dom(E)). Then

∂E(u) = {∇E(u)}.

Proof. The subdifferential ∂E(u) of some convex E at u ∈ dom(f) is given as

{p ∈ Rn : E(z)− E(u)− 〈p, z − u〉 ≥ 0, ∀ z ∈ dom(f)} .

Since u ∈ int(dom(E)), we find that for all v ∈ Rn, z = u± εv ∈ dom(E) for ε small enough. Therefore,

it holds that

E(u+ εv) ≥ E(u) + ε〈p, v〉, E(u− εv) ≥ E(u)− ε〈p, v〉,

for all v ∈ Rn and ε small enough. This implies that

lim
ε→0

E(u+ εv)− E(u)

ε
≥ 〈p, v〉, lim

ε→0

E(u)− E(u− εv)

ε
≤ 〈p, v〉,

which means

〈∇E(u), v〉 ≥ 〈p, v〉, 〈∇E(u), v〉 ≤ 〈p, v〉,

i.e.

〈∇E(u)− p, v〉 = 0

for all v ∈ Rn. For the particular choice of v := ∇E(u)− p we find p = ∇f(u). The above concludes the

proof if we can show that ∂f(u) is non-empty, which follows from the Theorem on Subdifferentiability.
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2.5.5 Subdifferential Rules

In the same way that the gradient of a differentiable function is only defined for points in the interior

of the domain, the subdifferential of a proper convex function is always defined for points in the relative

interior of its domain.

The relative interior of a set is a refinement of the concept of the interior that is useful when dealing

with low-dimensional sets embedded in higher-dimensional spaces. Intuitively, the relative interior of a

set contains all points that are not on the “edge” of the set, relative to the smallest subspace in which

this set lies. When the set is convex, the definition takes the a simple form:

Definition Relative Interior of Convex Sets The relative interior of a convex set C is defined as

ri(C) := {x ∈ C | ∀y ∈ C, ∃λ > 1, s.t. λx+ (1− λ)y ∈ C}

As mentioned earlier, the subdifferentiability of convex functions can be guaranteed for points that

are not necessarily in the interior of the domain, but that are in its relative interior. To better understand

this difference, consider the line segment I = [−1, 1] as a convex subset of the Euclidean plane I ⊂ R2.

The interior of I is empty with the Euclidean topology of R2, but its relative interior is the open line

segment ri(I) = (0, 1).

One key property of the relative interior is that it is not empty for convex sets.

Theorem 34. Let C be a non-empty convex set, then ri(C) is not empty.

Now that we understand where subdifferentials exists, we can learn the rules that guide their compu-

tation.

Theorem 35. Sum Rule. Let E1, E2 be convex functions, then ∂(E1 +E2)(u) = ∂E1(u) + ∂E2(u) for

all u ∈ ri(dom(E1)) ∩ ri(dom(E2)).

Proof. See Nesterov, Introductory Lectures on Convex Optimization, Lemma. 3.1.9.

Theorem 36. Chain Rule Given the linear operator A ∈ Rm×n and the convex function E : Rm →
R ∪ {∞}, then ∂(E ◦A)(u) = A∗∂E(Au) for all u ∈ ri(dom(E)) ∩ range(A).

Proof. See Nesterov, Introductory Lectures on Convex Optimization, Nesterov, Lemma. 3.1.8.


