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What this lectures are about

The optimization problems that result from training a large-scale machine
learning model have characteristics that make the stochastic gradient
(SG) method more effective than conventional gradient-based nonlinear
optimization techniques.

1. Characteristic of optimization of large-scale machine learning models

2. Stochastic gradient algorithm

3. Analysys of SG algorithm

4. Improved SG convergence with noise-reduction techniques

5. Improved SG convergence with second-order derivatives
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Optimization Problems in Machine Learning

We illustrate how optimization problems arise in machine learning and
what makes them challenging with two case studies:

1. linear regressor with bag-of-words features for text classification

2. open-ended deep neural network for speech and image recognition.

Both problems have some common characteristics:

Large-scale: models described by a large number of parameters.

Stochastic: models designed to make decisions on unseen data..

They differ in the optimization problem: (1) convex, (2) nonconvex.
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Text Classification via Convex Optimization

Text classification: assigning a predefined class to a natural language text
based on its contents. For example, determine if a text discusses politics.

Fig.: http://blog.thedigitalgroup.com/rajendras/2015

Given a set of examples {(x1, y1), . . . , (xn, yn)}, where

- feature vector xi of a text document (e.g., the words it includes).

- scalar label yi indicating if the document belongs (yi = 1) or not
(yi = 1) to a particular class.

Construct a classifier that predicts the class of an unseen text.
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First Solution: Minimizing Empirical Risk

Design a prediction function h s.t. h(x) predicts the text document.

Performance measure: how often h(xi) differs from the prediction yi.

Search h that minimizes the frequency of observed misclassifications:

Rn(h) =
1

n

n∑
i=1

1l[h(xi) 6= yi], where 1l[A] =

{
1 if A is true,

0 otherwise.

(1.1)

Rn is the empirical risk of misclassification.
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Minimizing Empirical Risk is Not Enough

Rote memorization with

hrote(x) =

{
yi if x = xi for some i ∈ {1, . . . , n},
±1 (arbitrarily) otherwise.

(1.2)

minimizes the empirical risk but has no guarantees on unseen documents.

The prediction function should generalizes the concepts learned from the
examples. To this goal, we choose

parametric functions satisfying certain smoothness conditions

use cross-validation to choosing between classes of prediction
functions
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Minimizing Expected Risk with Cross-validation

Cross-validation minimizes the expected risk by splitting examples into:

training set to optimize the parameters of h by minimizing Rn. The
selects a candidate for each class of parametric functions h1, . . . , hk

validation set to estimate the performance of h1, . . . , hk. This
selects the best candidate h∗

testing set to estimate the performance of h∗

Cross-validation has shown the success of bag-of-words approach for
text classification.
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Linear Regression with Bag-of-Words Features

Bag-of-Words features:

represents a text document by a feature vector x ∈ Rd, where each
component measures the appearance of a specific word.

very sparse vectors of high-dimensionality.

Affine prediction function classifies the documents:

h(x;w, τ) = wTx− τ (1.3)

Fig.: https://www.python-kurs.eu/text klassifikation python.php
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Optimization of the Model

Finding w, τ that minimize the empirical risk of misclassification

Rn(h) =
1

n

n∑
i=1

sign(−h(xi;w, τ) · yi) (1.4)

is difficult because the sign is discontinuous, takes discrete values, and
results in a combinatorial problem. For this reason, we approximate it by
a continuous loss function that we can minimize effective like

`(h, y) = log(1 + exp(−h(xi)y)). (1.5)

Classes of prediction functions hλ are determined by a regularization term

min
(w,τ)∈Rd+1

1

n

n∑
i=1

log(1 + exp(−h(xi)yi)) +
λ

2
‖w‖2. (1.6)

Optimizing the model parameters with various λ1, . . . , λk on the training
set gives the candidate solution hλ1

, . . . , hλk
. The final solution is the

candidate with best performance on the validation set.
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Perceptual Tasks via Deep Networks

Deep/Convolutional neural networks have recently achieved spectacular
success on perceptual problems such as speech and image recognition.

They are essentially the same types of networks from the 90s, but their
successes is now possible due to the availability of larger datasets and
computational resources.

Fig.: Architecture for image recognition. The 2012 ILSVRC winner consists of
eight layers: each layer performs a linear transformation followed by nonlinear
transformations.
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Neural Networks

DNN/CNNs construct a prediction function h whose value is computed
by applying successive transformations to a given input vector xi ∈ Rd0 .
These transformations are made in layers.

x
(j)
i = s(Wj x

(j−1)
i + bj) ∈ Rdj , (1.7)

where x
(0)
i = xi and

x
(j)
i is the input vector to layer j

j-th layer parameters: matrix Wj ∈ Rdj×dj−1 and vector bj ∈ Rdj

s componentwise nonlinear activation/pooling function.
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Deep Neural Networks

Neural Networks use simple activation functions, like the sigmoid or the
rectified linear unit (ReLU)

s(x) = 1/(1 + exp(−x)) s(x) = max{0, x}.

CNNs are networks where layers have

circulant matrices Wj , s.t. Wjx
(j1)
i is an image convolution.

activation functions rectify, normalize, or subsample images.

The output vector x(J)i is the prediction function value h(xi;w), where
w = {(W1, b1), . . . , (WJ , bJ)} collects the parameters of all the layers.
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Optimization of Deep Neural Networks

The optimization of DNN/CNN over the training set
{(x1, y1), . . . , (xn, yn)} with a loss function ` define the problem

min
w∈Rd

1

n

n∑
i=1

`(h(xi;w), yi). (1.8)

This problem is nonconvex. Finding a global optimum is intractable and
we look for approximate solutions with gradient-based methods.

The gradient of the objective function of (1.8) can be computed
efficiently by the chain rule (back propagation).
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Convolutional neural networks

The training process of DNNs and CNNs requires extreme care to
overcome the difficulties of large, nonlinear and nonconvex problems:

1. initialize the optimization process with a good starting point

2. monitor its progress to correct conditioning issues as they appear
(vanishing gradients).
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Fig.: Left:Word error rates reported by three different research groups on three
standard speech recognition benchmarks. Right: Historical top5 error rate of
the annual winner of the ImageNet image classification challenge.
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Formulation of a Supervised Classification Problem

Classification: choose a prediction function from an input space X to an
output space Y

h : X → Y

s.t., given x ∈X, h(x) offers an accurate prediction about the output y.

Supervised: h that generalizes the properties meaningful to determine y
from x that can be learned from input-output examples {(xi, yi)}ni=1.

Problem: avoid rote memorization by choosing a prediction function h
that minimizes a risk measure over a family of prediction functions H.
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Expected Risk instead of Empirical Risk

Let {(xi, yi)}ni=1 be samples from a joint probability distribution function
P (x, y). Rather than finding h that minimizes the empirical risk

Rn(h) =
1

n

n∑
i=1

1l[h(xi) = y1] 1l[A] =

{
1 if A is true

0 otherwise
, (1.9)

we find h that minimizes the expected misclassification risk over all
possible inputs, i.e., an h that minimizes

R(h) = P[h(x) 6= y] = E[1l[h(x) 6= y]], (1.10)

Stochastic problem (objective is an expectation) is substituted by a
surrogate problem constructed from {(xi, yi)}ni=1 as we do not know P .
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Choice of Prediction Function Family

We choose the family of functions H with three goals in mind:

1. H should contain functions that achieve a low empirical risk to
avoid underfitting the data. ⇒ select a rich family of functions

2. H should be selected to make the optimization problem solvable

3. R(h)−Rn(h) should be small over all h ∈H. This gap might
increase when H becomes too rich and overfits the training data.
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Gap Between Expected and Empirical Risk

When the expected risk represents a misclassification probability, with
probability at least 1− η,

sup
h∈H
|R(h)−Rn(h)| ≤ O

(√
1

2n
log

(
2

η

)
+
dH

n
log

(
n

dH

))
. (1.11)

dH : Vapnik-Chervonenkis dimension measures the capacity of H

fixed dH , the gap decreases by increasing number of examples (n).

fixed n, the gap can widen for larger dH (richer function families).

Bound (1.11) is not used in practice because it is easier to estimate the
gap with cross-validation than calculate the VC dimension of H.
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Structural Risk Minimization

Structural risk minimization: technique for choosing a prediction function.
Consider a nested families of function parametrized by function Ω

HC = {h ∈H : Ω(h) ≤ C} ⇒ HC ⊂ HD for C < D

1. Increasing C reduces the Rn because it enlarges the family of
functions we can optimize over.

2. For large C, the Rn −R increases because the prediction function
overfits the training data.

Fig.: The optimal empirical risk decreases when C increases. |R(w)−Rn(w)|
is bounded above by a quantity that increases with C. The value of C that
offers the best guarantee on the expected risk increases with n.
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In the following, we consider the problem...

Assume that the prediction function h is parameterized by a real vector
w ∈ Rd. This vector defines our optimization variable and the family of
prediction functions

H = {h(·;w) : Rd× 7→ Rdy | w ∈ Rd}.

Given a loss function ` : Rdy × Rdy 7→ R that measures the loss
associated with the prediction h(x;w) when the true label is y with
`(h(x;w), y), we define:

ξ: random variable that represents a sample or a set of samples
{(xi, yi)}i∈S .

f(w; ξ) = `(h(w; ξ), y): the loss incurred for a given (w, ξ)
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Expected and Empirical Risk

Let P (x, y) be the probability distribution between inputs and outputs,
we define expected risk by

R(w) =

∫
Rdx×Rdy

`(h(x;w), y)dP (x, y) = E[`(h(x;w), y)] = E[f(w; ξ)]

To minimize the expected risk, we need complete information about P .
As this is not possible, we minimize the empirical risk

Rn(w) =
1

n

n∑
i=1

`(h(xi;w), yi) =
1

n

n∑
i=1

f(w; ξ[i])

that estimates the expected risk ( in supervised classification) from n
independently drawn input-output samples {ξ[i]}ni=1 = {(xi, yi)}ni=1.
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Stochastic Optimization for Empirical Risk Minimization

The stochastic gradient method (SG) minimizes the empirical risk Rn
with the sequence:

wk+1 = wk − αk∇fik(wk) ∀k ∈ N, (2.12)

where w1 is given, αk is a positive stepsize, and ik is chosen randomly.
Characteristics:

1. Cheap iterations that only computate one gradient ∇fik(wk)

2. The sequence is not determined uniquely by Rn, w1, and stepsizes,
but depends also on the random sequence {ik}.

3. −∇fik(wk) might not be a descent direction from wk.
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Batch Optimization for Empirical Risk Minimization

A batch approach minimizes the Empirical Risk directly. The simplest
steepest descent or gradient method defines the sequence:

wk+1 = wk − αk∇Rn(wk) = wk − αk
1

n

n∑
i=1

∇fi(wk) ∀k ∈ N, (2.13)

Characteristics:

1. Computing αk∇Rn(wk) is more expensive than αk∇fik(wk) in SG.

2. By iterating over all samples, batch methods compute better steps.

3. It can use (quasi) Newton methods to speed up optimization of Rn.

4. The sum structure of Rn allows parallel or distributed updates.
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Typical Performance of Stochastic and Batch Methods
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Fig.: Empirical risk Rn as a function of the number of accessed data points
(ADP) for a batch L-BFGS method and the SG method on a binary
classification problem with a logistic loss objective and the RCV1 dataset.
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Stochastic vs Batch Methods

SG is used in machine learning when cannot afford to iterate over all
samples to compute the next iterate.

SG uses the samples more efficient than a batch method. Intuitively:

-Consider a training set S with ten copies of a set Ss.

-In a batch approach, the iterations that use S as training set are ten
times more expensive than iteration that only use one copy of Ss.

-In the SG method, the iterations using S and Ss as training sets
cost the same.

-In reality, a training set does not consist of exact duplicates of
sample data, but it has enough redundancy to make using all of the
samples in every iteration inefficient.
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Next week: Stochastic vs Batch Methods

Let R∗n be the minimal value of Rn, then if Rn is strongly convex

- the error of a batch gradient method satisfies

|Rn(wk)−R∗n| ≤ O(ρk), ρ ∈ (0, 1).

The number of iterations where the training error is above ε is
proportional to log( 1

ε ), and the cost of ε-optimality is O(n log( 1
ε )).

- the SG error for ik is drawn uniformly from {1, . . . , n} is

E[|Rn(wk)−R∗n|] = O(
1

k
) (2.14)

As it does not depend on n, the cost of ε-optimality is O( 1
ε ).

The SG cost O( 1
ε ) is smaller than the batch cost O(n log( 1

ε )) if n is large.
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Next week: Stochastic vs Batch Methods

SG avoids overfitting in the sense that the minimizer of the empirical risk
found by SG has some minimization guarantees on the expected risk.

By applying the SG iteration with ∇f(wk;xik) replaced by ∇f(wk; ξk)
with each ξk drawn independently according to the distribution P ,

E[|R(wk)−R∗|] = O(
1

k
). (2.15)

This is again a sublinear rate, but on the expected risk.
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Other Methods

A mini-batch approach chooses a subset of samples Sk ⊂ {1, . . . , n}
randomly in each iteration to improve the gradient estimate as follows:

wk+1 = wk −
αk
|Sk|

∑
i∈Sk

∇fi(wk) ∀k ∈ N, (2.16)

This allows some degree of parallelization and reduces the variance of the
stochastic gradient estimates.
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gradient	method	

						Stochas)c	
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						Batch	
Newton	method	

Fig.: Schematic of a two-dimensional spectrum of optimization methods for
machine learning. The horizontal axis represents methods designed to control
stochastic noise; the second axis, methods that deal with ill conditioning.
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