
Optimization Methods for Large-Scale Machine
Learning

V. Estellers

WS 2017

What this lectures are about

The optimization problems that result from training a large-scale machine
learning model have characteristics that make the stochastic gradient
(SG) method more effective than conventional gradient-based nonlinear
optimization techniques.

1. Characteristic of optimization of large-scale machine learning models

2. Stochastic gradient algorithm

3. Analysys of SG algorithm

4. Improved SG convergence with noise-reduction techniques

5. Improved SG convergence with second-order derivatives

2

References

The lectures are organized following:
Bottou, L., Curtis, F. E., and Nocedal, J. Optimization Methods for
Large-Scale Machine Learning. 2016.http://arxiv.org/abs/1606.04838
We will also cover some material from:

1. Gower, R. M., Roux, N. Le, and Bach, F. Tracking the gradients
using the Hessian: A new look at variance reducing stochastic
methods., 2017.

2. Roux, N. Le, Schmidt, M., and Bach, F. A Stochastic Gradient
Method with an Exponential Convergence Rate for Strongly-Convex
Optimization with Finite Training Sets. 2012.

3

Optimization Problems in Machine Learning

We illustrate how optimization problems arise in machine learning and
what makes them challenging with two case studies:

1. linear regressor with bag-of-words features for text classification

2. open-ended deep neural network for speech and image recognition.

Both problems have some common characteristics:

- Large-scale: models described by a large number of parameters.

- Stochastic: models designed to make decisions on unseen data..

They differ in the optimization problem: (1) convex, (2) nonconvex.

Optimization Problems in Machine Learning 4

Text Classification via Convex Optimization

Text classification: assigning a predefined class to a natural language text
based on its contents. For example, determine if a text discusses politics.

Fig.: http://blog.thedigitalgroup.com/rajendras/2015

Given a set of examples {(x1, y1), . . . , (xn, yn)}, where

- feature vector xi of a text document (e.g., the words it includes).

- scalar label yi indicating if the document belongs (yi = 1) or not
(yi = 1) to a particular class.

Construct a classifier that predicts the class of an unseen text.
Optimization Problems in Machine Learning 5

First Solution: Minimizing Empirical Risk

Design a prediction function h s.t. h(x) predicts the text document.

- Performance measure: how often h(xi) differs from the prediction yi.

- Search h that minimizes the frequency of observed misclassifications:

Rn(h) =
1

n

n∑
i=1

1l[h(xi) 6= yi], where 1l[A] =

{
1 if A is true,

0 otherwise.

(1.1)

Rn is the empirical risk of misclassification.

Optimization Problems in Machine Learning 6

Minimizing Empirical Risk is Not Enough

Rote memorization with

hrote(x) =

{
yi if x = xi for some i ∈ {1, . . . , n},
±1 (arbitrarily) otherwise.

(1.2)

minimizes the empirical risk but has no guarantees on unseen documents.

The prediction function should generalizes the concepts learned from the
examples. To this goal, we choose

- parametric functions satisfying certain smoothness conditions

- use cross-validation to choosing between classes of prediction
functions

Optimization Problems in Machine Learning 7

Minimizing Expected Risk with Cross-validation

Cross-validation minimizes the expected risk by splitting examples into:

- training set to optimize the parameters of h by minimizing Rn. The
selects a candidate for each class of parametric functions h1, . . . , hk

- validation set to estimate the performance of h1, . . . , hk. This
selects the best candidate h∗

- testing set to estimate the performance of h∗

Cross-validation has shown the success of bag-of-words approach for
text classification.

Optimization Problems in Machine Learning 8

Linear Regression with Bag-of-Words Features

Bag-of-Words features:

- represents a text document by a feature vector x ∈ Rd, where each
component measures the appearance of a specific word.

- very sparse vectors of high-dimensionality.

Affine prediction function classifies the documents:

h(x;w, τ) = wTx− τ (1.3)

Fig.: https://www.python-kurs.eu/text klassifikation python.php

Optimization Problems in Machine Learning 9

Optimization of the Model

Finding w, τ that minimize the empirical risk of misclassification

Rn(h) =
1

n

n∑
i=1

sign(−h(xi;w, τ) · yi) (1.4)

is difficult because the sign is discontinuous, takes discrete values, and
results in a combinatorial problem. For this reason, we approximate it by
a continuous loss function that we can minimize effective like

`(h, y) = log(1 + exp(−h(xi)y)). (1.5)

Classes of prediction functions hλ are determined by a regularization term

min
(w,τ)∈Rd+1

1

n

n∑
i=1

log(1 + exp(−h(xi)yi)) +
λ

2
‖w‖2. (1.6)

Optimizing the model parameters with various λ1, . . . , λk on the training
set gives the candidate solution hλ1

, . . . , hλk . The final solution is the
candidate with best performance on the validation set.

Optimization Problems in Machine Learning 10

Perceptual Tasks via Deep Networks

Deep/Convolutional neural networks have recently achieved spectacular
success on perceptual problems such as speech and image recognition.

They are essentially the same types of networks from the 90s, but their
successes is now possible due to the availability of larger datasets and
computational resources.

Fig.: Architecture for image recognition. The 2012 ILSVRC winner consists of
eight layers: each layer performs a linear transformation followed by nonlinear
transformations.

Optimization Problems in Machine Learning 11

Neural Networks

DNN/CNNs construct a prediction function h whose value is computed
by applying successive transformations to a given input vector xi ∈ Rd0 .
These transformations are made in layers.

x
(j)
i = s(Wj x

(j−1)
i + bj) ∈ Rdj , (1.7)

where x
(0)
i = xi and

- x
(j)
i is the input vector to layer j

- j-th layer parameters: matrix Wj ∈ Rdj×dj−1 and vector bj ∈ Rdj

- s componentwise nonlinear activation/pooling function.

Optimization Problems in Machine Learning 12

Deep Neural Networks

Neural Networks use simple activation functions, like the sigmoid or the
rectified linear unit (ReLU)

s(x) = 1/(1 + exp(−x)) s(x) = max{0, x}.

CNNs are networks where layers have

- circulant matrices Wj , s.t. Wjx
(j1)
i is an image convolution.

- activation functions rectify, normalize, or subsample images.

The output vector x(J)i is the prediction function value h(xi;w), where
w = {(W1, b1), . . . , (WJ , bJ)} collects the parameters of all the layers.

Optimization Problems in Machine Learning 13

Optimization of Deep Neural Networks

The optimization of DNN/CNN over the training set
{(x1, y1), . . . , (xn, yn)} with a loss function ` define the problem

min
w∈Rd

1

n

n∑
i=1

`(h(xi;w), yi). (1.8)

This problem is nonconvex. Finding a global optimum is intractable and
we look for approximate solutions with gradient-based methods.

The gradient of the objective function of (1.8) can be computed
efficiently by the chain rule (back propagation).

Optimization Problems in Machine Learning 14

Convolutional neural networks

The training process of DNNs and CNNs requires extreme care to
overcome the difficulties of large, nonlinear and nonconvex problems:

1. initialize the optimization process with a good starting point

2. monitor its progress to correct conditioning issues as they appear
(vanishing gradients).

��������	
�����
������ ��������������� �
�	��	������������
��

���

���

���

 ��

!��

"��

�#$ �

!�$��

�#$���%$!�

 #$"�

� $&�

���

'��

Fig.: Left:Word error rates reported by three different research groups on three
standard speech recognition benchmarks. Right: Historical top5 error rate of
the annual winner of the ImageNet image classification challenge.

Optimization Problems in Machine Learning 15

Formulation of a Supervised Classification Problem

Classification: choose a prediction function from an input space X to an
output space Y

h : X → Y

s.t., given x ∈X, h(x) offers an accurate prediction about the output y.

Supervised: h that generalizes the properties meaningful to determine y
from x that can be learned from input-output examples {(xi, yi)}ni=1.

Problem: avoid rote memorization by choosing a prediction function h
that minimizes a risk measure over a family of prediction functions H.

Optimization Problems in Machine Learning 16

Expected Risk instead of Empirical Risk

Let {(xi, yi)}ni=1 be samples from a joint probability distribution function
P (x, y). Rather than finding h that minimizes the empirical risk

Rn(h) =
1

n

n∑
i=1

1l[h(xi) = y1] 1l[A] =

{
1 if A is true

0 otherwise
, (1.9)

we find h that minimizes the expected misclassification risk over all
possible inputs, i.e., an h that minimizes

R(h) = P[h(x) 6= y] = E[1l[h(x) 6= y]], (1.10)

Stochastic problem (objective is an expectation) is substituted by a
surrogate problem constructed from {(xi, yi)}ni=1 as we do not know P .

Optimization Problems in Machine Learning 17

Choice of Prediction Function Family

We choose the family of functions H with three goals in mind:

1. H should contain functions that achieve a low empirical risk to
avoid underfitting the data. ⇒ select a rich family of functions

2. H should be selected to make the optimization problem solvable

3. R(h)−Rn(h) should be small over all h ∈H. This gap might
increase when H becomes too rich and overfits the training data.

Optimization Problems in Machine Learning 18

Gap Between Expected and Empirical Risk

When the expected risk represents a misclassification probability, with
probability at least 1− η,

sup
h∈H
|R(h)−Rn(h)| ≤ O

(√
1

2n
log

(
2

η

)
+
dH

n
log

(
n

dH

))
. (1.11)

- dH : Vapnik-Chervonenkis dimension measures the capacity of H

- fixed dH , the gap decreases by increasing number of examples (n).

- fixed n, the gap can widen for larger dH (richer function families).

Bound (1.11) is not used in practice because it is easier to estimate the
gap with cross-validation than calculate the VC dimension of H.

Optimization Problems in Machine Learning 19

Structural Risk Minimization

Structural risk minimization: technique for choosing a prediction function.
Consider a nested families of function parametrized by function Ω

HC = {h ∈H : Ω(h) ≤ C} ⇒ HC ⊂ HD for C < D

1. Increasing C reduces the Rn because it enlarges the family of
functions we can optimize over.

2. For large C, the Rn −R increases because the prediction function
overfits the training data.

Fig.: The optimal empirical risk decreases when C increases. |R(w)−Rn(w)|
is bounded above by a quantity that increases with C. The value of C that
offers the best guarantee on the expected risk increases with n.

Optimization Problems in Machine Learning 20

In the following, we consider the problem...

Assume that the prediction function h is parameterized by a real vector
w ∈ Rd. This vector defines our optimization variable and the family of
prediction functions

H = {h(·;w) : Rd× 7→ Rdy | w ∈ Rd}.

Given a loss function ` : Rdy × Rdy 7→ R that measures the loss
associated with the prediction h(x;w) when the true label is y with
`(h(x;w), y), we define:

- ξ: random variable that represents a sample or a set of samples
{(xi, yi)}i∈S .

- f(w; ξ) = `(h(w; ξ), y): the loss incurred for a given (w, ξ)

Optimization Methods 21

Expected and Empirical Risk

Let P (x, y) be the probability distribution between inputs and outputs,
we define expected risk by

R(w) =

∫
Rdx×Rdy

`(h(x;w), y)dP (x, y) = E[`(h(x;w), y)] = E[f(w; ξ)]

To minimize the expected risk, we need complete information about P .
As this is not possible, we minimize the empirical risk

Rn(w) =
1

n

n∑
i=1

`(h(xi;w), yi) =
1

n

n∑
i=1

f(w; ξ[i])

that estimates the expected risk (in supervised classification) from n
independently drawn input-output samples {ξ[i]}ni=1 = {(xi, yi)}ni=1.

Optimization Methods 22

Stochastic Optimization for Empirical Risk Minimization

The stochastic gradient method (SG) minimizes the empirical risk Rn
with the sequence:

wk+1 = wk − αk∇fik(wk) ∀k ∈ N, (2.12)

where w1 is given, αk is a positive stepsize, and ik is chosen randomly.
Characteristics:

1. Cheap iterations that only computate one gradient ∇fik(wk)

2. The sequence is not determined uniquely by Rn, w1, and stepsizes,
but depends also on the random sequence {ik}.

3. −∇fik(wk) might not be a descent direction from wk.

Optimization Methods 23

Batch Optimization for Empirical Risk Minimization

A batch approach minimizes the Empirical Risk directly. The simplest
steepest descent or gradient method defines the sequence:

wk+1 = wk − αk∇Rn(wk) = wk − αk
1

n

n∑
i=1

∇fi(wk) ∀k ∈ N, (2.13)

Characteristics:

1. Computing αk∇Rn(wk) is more expensive than αk∇fik(wk) in SG.

2. By iterating over all samples, batch methods compute better steps.

3. It can use (quasi) Newton methods to speed up optimization of Rn.

4. The sum structure of Rn allows parallel or distributed updates.

Optimization Methods 24

Typical Performance of Stochastic and Batch Methods

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
5

0

0.1

0.2

0.3

0.4

0.5

0.6

Accessed Data Points

E
m

p
iri

c
a

l R
is

k

SGD

LBFGS

4

Fig.: Empirical risk Rn as a function of the number of accessed data points
(ADP) for a batch L-BFGS method and the SG method on a binary
classification problem with a logistic loss objective and the RCV1 dataset.

Optimization Methods 25

Stochastic vs Batch Methods

SG is used in machine learning when cannot afford to iterate over all
samples to compute the next iterate.

SG uses the samples more efficient than a batch method. Intuitively:

- Consider a training set S with ten copies of a set Ss.

- In a batch approach, the iterations that use S as training set are ten
times more expensive than iteration that only use one copy of Ss.

- In the SG method, the iterations using S and Ss as training sets
cost the same.

- In reality, a training set does not consist of exact duplicates of
sample data, but it has enough redundancy to make using all of the
samples in every iteration inefficient.

Optimization Methods 26

Next week: Stochastic vs Batch Methods

Let R∗n be the minimal value of Rn, then if Rn is strongly convex

- the error of a batch gradient method satisfies

|Rn(wk)−R∗n| ≤ O(ρk), ρ ∈ (0, 1).

The number of iterations where the training error is above ε is
proportional to log(1

ε), and the cost of ε-optimality is O(n log(1
ε)).

- the SG error for ik is drawn uniformly from {1, . . . , n} is

E[|Rn(wk)−R∗n|] = O(
1

k
) (2.14)

As it does not depend on n, the cost of ε-optimality is O(1
ε).

The SG cost O(1
ε) is smaller than the batch cost O(n log(1

ε)) if n is large.

Optimization Methods 27

Next week: Stochastic vs Batch Methods

SG avoids overfitting in the sense that the minimizer of the empirical risk
found by SG has some minimization guarantees on the expected risk.

By applying the SG iteration with ∇f(wk;xik) replaced by ∇f(wk; ξk)
with each ξk drawn independently according to the distribution P ,

E[|R(wk)−R∗|] = O(
1

k
). (2.15)

This is again a sublinear rate, but on the expected risk.

Optimization Methods 28

Other Methods

A mini-batch approach chooses a subset of samples Sk ⊂ {1, . . . , n}
randomly in each iteration to improve the gradient estimate as follows:

wk+1 = wk −
αk
|Sk|

∑
i∈Sk

∇fi(wk) ∀k ∈ N, (2.16)

This allows some degree of parallelization and reduces the variance of the
stochastic gradient estimates.

						Stochas)c		
gradient	method	

										Batch	
gradient	method	

						Stochas)c	
Newton	method	

											second-order	methods	

						noise	reduc/on	methods	

						Batch	
Newton	method	

Fig.: Schematic of a two-dimensional spectrum of optimization methods for
machine learning. The horizontal axis represents methods designed to control
stochastic noise; the second axis, methods that deal with ill conditioning.

Optimization Methods 29

Optimization for Supervised Learning

Given a set of examples (x1, y1), . . . , (xn, yn)

- each example ξ = (x, y) is a pair of an input x and a scalar output y.

- loss `(ŷ, y) measures the cost of predicting ŷ when the answer is y

- family H of functions h(·;w) parametrized by a weight vector w.

We seek h ∈H that minimizes the loss f(ξ;w) = `(h(x;w), y).
Although we would like to average over the unknown distribution P (x, y)

f(w) = R(w) = E[`(h(x;w), y)] =
∫
`(h(x;w), y)dP (x, y)

we must settle for computing the average over the samples

f(w) = Rn(w) =
1

n

n∑
i=1

`(h(xi;w), yi).

Statistical learning theory (Vapnik and Chervonenkis, 1971) justifies
minimizing Rn instead of R when H is sufficiently restrictive.

Optimization Methods 30

Stochastic Gradient Method

The objective function F : Rd 7→ R can be the expected or empirical risk:

F (w) = E[f(w, ξ)] or F (w) =
1

n

n∑
i=1

fi(w).

The analysis applies to both objectives. The only difference is the way
that the stochastic gradient estimates are chosen.

1. F = Rn: pick samples uniformly from a finite training set with
replacement (sample discrete distribution with equal weights for
every sample).

2. F = R: pick samples in each iteration according to distribution P
(online or large-scale setting).

Stochastic Gradient Descent 31

Stochastic Gradient Method

Choose an initial iterate w1

for k=1,2,. . . do
Generate a realization of the random variable ξk
Compute a stochastic vector g(wk, ξk)
Choose a stepsize αk > 0
Set the new iterate as wk+1 = wk − αkg(wk, ξk)

end for

The algorithm requires three computational tools:

1. mechanism for generating a realization of a random variable ξk,
where {ξk} is a sequence of jointly independent random variables.

2. mechanism for computing stochastic vector g(wk, ξk) ∈ Rd

3. mechanism for computing a scalar stepsize αk > 0

Stochastic Gradient Descent 32

General version of Stochastic Gradient Method

This SG algorithm generalizes many stochastic gradient-based algorithms:

g(wk, ξk) =

∇f(wk, ξk) simple or base SG
1
nk

∑nk
i=1∇f(wk, ξk,i) mini-batch SG

Hk
1
nk

∑nk
i=1∇f(wk, ξk,i) 2nd-order SG

flexibility choosing mini-batch size nk and symmetric positive definite Hk.

Prove convergence of SG with two assumptions:

1. smoothness of the objective function

2. bounded 1st and 2nd moments of stochastic vectors {g(wk, ξk)}
If the objective is strongly convex SG converges to the minimum,
otherwise to a stationary point.

Stochastic Gradient Descent 33

Assumption 1: L-smooth function

The objective function F : Rd 7→ R is continuously differentiable and the
gradient function of F , ∇F : Rd 7→ Rd, is Lipschitz continuous with
Lipschitz constant L, that is

‖∇F (w)−∇F (w̄)‖ ≤ L‖w − w̄‖ ∀w, w̄ ∈ Rd.

This assumption ensures that the gradient of F does not change
arbitrarily quickly with respect to the parameter vector and can be used
to estimate how far to move (SG stepsize) to decrease F .

An important consequence of F being L-smooth is that

F (w) ≤ F (w̄) +∇F (w̄)T (w − w̄) +
1

2
L‖w − w̄‖2 ∀w, w̄ ∈ Rd.

Stochastic Gradient Descent 34

First Lemma

Lemma
If F is an L-smooth function and Eξk [·] denotes the expected value taken
w.r.t the distribution of the random variable ξk, the iterates of SG satisfy:

Eξk [F (wk+1)]− F (wk) ≤ −αk∇F (wk)
TEξk [g(wk, ξk)]︸ ︷︷ ︸

expected directional derivative
of F along direction g(wk, ξk)

+
α2
kL

2
Eξk [‖g(wk, ξk)‖

2]︸ ︷︷ ︸
second moment g(wk, ξk)

If g(wk, ξk) is an unbiased estimate of ∇F (wk), we have

Eξk [F (wk+1)]− F (wk) ≤ −αk‖∇F (wk)‖2 +
1

2
α2
kLEξk [‖g(wk, ξk)‖2].

Stochastic Gradient Descent 35

Proof

As F is L-smooth and the SG iterates wk+1 = wk−αkg(wk, ξk), we have

F (wk+1)− F (wk) ≤ ∇F (wk)T (wk+1 − wk) +
1

2
L‖wk+1 − wk‖2

≤ −αk∇F (wk)T g(wk, ξk) +
1

2
Lα2

k‖g(wk, ξk)‖2.

Taking expectations on both sides w.r.t the distribution of ξk, and noting
that only wk+1 and g(wk, ξk) depend on ξk, we obtain the desired bound

Eξk [F (wk+1)−F (wk)] ≤ Eξk [−αk∇F (wk)T g(wk, ξk) +
1

2
α2
kL‖g(wk, ξk)‖2],

≤ −αk∇F (wk)TEξk [g(wk, ξk)] +
α2
k

2
LEξk [‖g(wk, ξk)‖2].

Stochastic Gradient Descent 36

Assumption 2: Bounds on First and Second Moments

The objective function and the SG Algorithm satisfy:

1. {wk} are in an open set where F is bounded below by scalar Finf.

2. In expectation, −g(wk, ξk) is a direction of sufficient descent with a
norm comparable to the norm of the gradient. There is µG ≥ µ > 0

1

µ
∇F (wk)TE[g(wk, ξk)] ≥ ‖∇F (wk)‖2

‖∇F (wk)‖ ≥ 1

µG
‖E[g(wk, ξk)]‖

3. There exist scalars M,MV ≥ 0 such that, for all k ∈ N

Vξk [g(wk, ξk)] ≤M +MV ‖∇F (wk)‖2

Stochastic Gradient Descent 37

Assumption 2: In practice

Point 1, just means that there is no trivial solution minw F (w) = −∞.

Point 2 holds if g(wk, ξk) is an unbiased estimate of ∇F (wk) multiplied
by positive definite Hk with eigenvalues in a fixed interval.

Points 2 and 3 are combined into a single inequality with MG ≥ µ2 ≥ 0

Eξk [‖g(wk, ξk)‖2] = Vξk [g(wk, ξk)] + ‖Eξk [g(wk, ξk)]‖2

≤M +MV ‖∇F (wk)‖2 + µ2
G‖∇F (wk)‖2

≤M +MG‖∇F (wk)‖2

Stochastic Gradient Descent 38

Lemma 2

Lemma
If F is L-smooth and Assumption 2 holds, the SG iterates satisfy

Eξk [F (wk+1)]− F (wk) ≤ −µαk‖∇F (wk)‖2 +
1

2
α2
kLEξk [‖g(wk, ξk)‖

2]

Eξk [F (wk+1)]− F (wk) ≤ − (µ− 1

2
αkLMG)αk‖∇F (wk)‖2 +

1

2
α2
kLM︸ ︷︷ ︸

deterministic

.

In English, regardless of how the method arrived at wk, the optimization
continues in a Markovian manner: wk+1 that depends only on the iterate
wk, the seed ξk, and the stepsize αk and not on any past iterates.

Stochastic Gradient Descent 39

Lemma 2, Proof

Let us prove the first inequality. As F is L-smooth, Lemma 1 states

Eξk [F (wk+1)]− F (wk) ≤ −αk∇F (wk)
TEξk [g(wk, ξk)]︸ ︷︷ ︸

Assumption 2

∇F (wk)
T E[g(wk,ξk)]≥µ‖∇F (wk)‖2

+
1

2
α2
kLEξk [‖g(wk, ξk)‖

2]

Eξk [F (wk+1)]− F (wk) ≤ −µαk‖∇F (wk)‖2 +
1

2
α2
kL Eξk [‖g(wk, ξk)‖

2]︸ ︷︷ ︸
combined assumption 2

≤M+MG‖∇F (wk)‖2

Eξk [F (wk+1)]− F (wk) ≤ −µαk‖∇F (wk)‖2 +
1

2
α2
kL(M +MG‖∇F (wk)),

Eξk [F (wk+1)]− F (wk) ≤ (−µαk +
1

2
α2
kLMG)‖∇F (wk)‖2 +

1

2
α2
kLM.

Stochastic Gradient Descent 40

Intuitive Convergence of SG with fixed stepsize

Consider the inequality of the second lemma

Eξk [F (wk+1)]− F (wk) ≤ −(µ− 1

2
αkLMG)αk‖∇F (wk)‖2︸ ︷︷ ︸

tends to 0 as ∇F (wk)→0

+
1

2
α2
kLM.

For a fixes stepsize, the last term remains constant and, after some point,
we cannot expect to reduce the distance between the objective iterates
beyond 1

2α
2LM . That is, we converge to a neighborhood of the optimal.

⇒ SG needs diminishing stepsizes αk → 0 to converge.

Stochastic Gradient Descent 41

Convergence of SG with fixed stepsize

Theorem
If F is an L-smooth and c-strongly convex function that satisfies
Assumption 2, with Finf = F ∗, and the SG method is run with a positive
stepsize α ≤ µ

LMG
, then the expected optimality gap satisfies for all k

E[F (wk)− F ∗] ≤ αLM

2cµ
+ (1− αcµ)k−1

(
F (w1)− F ∗ − αLM

2cµ

)
,

where E is the expectation w.r.t joint distribution of all random variables.

A direct result of this theorem states that the SG iterates converge to the
αLM
2cµ neighborhood of the optimal value as k →∞.

Stochastic Gradient Descent 42

Strongly Convex Functions

Definition
The objective function F : Rd 7→ R is strongly convex in that there
exists a constant c > 0 such that

F (w) ≥ F (w̄) +∇F (w̄)T (w − w̄) +
1

2
c‖w − w̄‖2 ∀w, w̄ ∈ Rd.

Moreover, F has a unique minimizer w∗ ∈ Rd with F ∗ = F (w∗) and
satisfies

2c(F (w)− F ∗) ≤ ‖∇F (w)‖2 ∀w ∈ Rd.

If F is L-smooth and c-strongly convex, then c ≤ L.

Stochastic Gradient Descent 43

Proof

Let us use the bound on the stepsize α ≤ µ
LMG

in Lemma 2

Eξk [F (wk+1)]− F (wk) ≤ −(µ−
1

2
αLMG)α‖∇F (wk)‖2 +

1

2
α2
kLM

≤ −µ
2
α‖∇F (wk)‖2 +

1

2
α2LM.

As F is c-strongly convex, 2c(F (wk)− F ∗) ≤ ‖∇F (wk)‖2 and we get

Eξk [F (wk+1)]− F (wk) ≤ −µαc(F (wk)− F ∗) +
1

2
α2LM.

Subtracting F ∗ from both sides, taking total expectations, and rearranging

E[F (wk+1)− F ∗] ≤ (1− µαc)E[F (wk)− F ∗] +
1

2
α2LM.

Subtracting the constant αLM
2cµ

from both sides

E[F (wk+1)− F ∗]−
αLM

2cµ
≤ (1− µαc)E[F (wk)− F ∗] +

1

2
α2LM − αLM

2cµ

≤ (1− µαc)E[F (wk)− F ∗] +
αLM

2cµ
(αcµ− 1)

≤ (1− µαc)
(
E[F (wk)− F ∗]−

αLM

2cµ

)
.

Stochastic Gradient Descent 44

Continuation Proof

This inequality

E[F (wk+1)− F ∗]−
αLM

2cµ
≤ (1− µαc)

(
E[F (wk)− F ∗]−

αLM

2cµ

)
.

is a contraction because

0 < αcµ ≤︸︷︷︸
α≤ µ

LMG

cµ2

LMG
≤︸︷︷︸

MG≥µ2

cµ2

Lµ2
=

c

L
≤︸︷︷︸
L≥c

1

Applying the contraction inequality k − 1 times, we obtain the desired result

E[F (wk)− F ∗]−
αLM

2cµ
≤ (1− αcµ)k−1

(
F (w1)− F ∗ −

αLM

2cµ

)
E[F (wk)− F ∗] ≤

αLM

2cµ
+ (1− αcµ)k−1

(
F (w1)− F ∗ −

αLM

2cµ

)
.

Stochastic Gradient Descent 45

Choice of Stepsize (Learning Rate)

From the inequality

E[F (wk)− F ∗] ≤ αLM

2cµ
+ (1− αcµ)k−1

(
F (w1)− F ∗ − αLM

2cµ

)
,

we see that selecting a smaller stepsize worsens the contraction constant,
but ensures convergence to a smaller neighborhood of the optimal value.

We have two cases of interest:

1. If the noise in the gradient decays with ‖∇F (wk)‖2 (M = 0), SG
converges linearly to the optimal value.

2. If the gradient computation is noisy (M > 0), we only have linear
convergence to a neighborhood of the optimal value. After some
point, the noise in the gradient prevents further progress.

Stochastic Gradient Descent 46

Intuitive Approach to Decreasing Stepsizes

Run SG with a fixed stepsize and when progress stalls halve the stepsize.
For instance:

- Run SG until iteration k2 where the expected suboptimality gap is
twice the asymptotic value

E[F (wK2)− F ∗] ≤ 2
α1LM

2cµ
= 2Fα1 .

- - Halve the stepsize {αr+1} = {α12−r} and repeat the process.

The sequence of optimality gaps converges to 0 and SG to a minimum.

E[F (wkr+1
)− F ∗] ≤ α12−r ≤ 2Fαr E[F (wkr)− F ∗] ≈ 2Fαr−1

= 4Fαr

The speed of convergence depends on how many iterations it takes to
reach each bound.

Stochastic Gradient Descent 47

First Approach to Decreasing Stepsizes

We can show that each time the stepsize is cut in half, we need twice as
many iterations to reach the next bound. As doubling the number of
iterations, halves the suboptimality gap, the convergence rate is O(1/k).

!"

#$

!

%
#
&
'

#(
#$)*

" ")!

+

+,

-

-,

Fig.: Depiction of the strategy of halving the stepsize α when the expected
suboptimality gap is smaller than twice the asymptotic limit Fα.

Stochastic Gradient Descent 48

Convergence of SG with decaying stepsizes

Theorem
If F is an L-smooth and c-strongly convex function that satisfies
Assumption 2, with Finf = F ∗, and the SG method is run with a fixed
stepsize sequence satisfying

αk =
β

γ + k
for some β >

1

cµ
, γ > 0 such that α1 ≤

µ

LMG
.

Then, for all k ∈ N the expected optimality gap satisfies the inequality

E[F (wk)− F ∗] ≤ η

γ + k
η = max

{
β2LM

2(βcµ− 1)
, (γ + 1)(F (w1)− F ∗)

}
.

Stochastic Gradient Descent 49

Proof

As the step size decays αkLM ≤ α1LM ≤ µ, which in Lemma 2 gives

Eξk [F (wk+1)]− F (wk) ≤ −(µ−
1

2
αkLMG)αk‖∇F (wk)‖2 +

1

2
α2
kLM

≤ −µ
2
αk‖∇F (wk)‖2 +

1

2
α2
kLM.

As F is strongly convex, 2c(F (wk)− F ∗) ≤ ‖∇F (wk)‖2 and

Eξk [F (wk+1)]− F (wk) ≤ −µαkc(F (wk)− F ∗) +
1

2
α2
kLM

Subtracting F ∗ from both sides, taking total expectations, and rearranging,

E[F (wk+1)− F ∗] ≤ (1− µαkc)E[F (wk)− F ∗] +
1

2
α2
kLM.

Stochastic Gradient Descent 50

Proof

We prove

E[F (wk)− F ∗] ≤
η

γ + k
η = max

{
β2LM

2(βcµ− 1)
, (γ + 1)(F (w1)− F ∗)

}
.

by induction. The definition of η ensures that it is true for k = 1. We assume
that the inequality holds for some k ≥ 1 and use it in the inequality from the
previous slide

E[F (wk+1)− F ∗] ≤ (1− µαkc)E[F (wk)− F ∗] +
1

2
α2
kLM (3.17)

≤ (1− µαkc)
η

γ + k
+

1

2
α2
kLM. (3.18)

Let k̂ = γ + k and write αk = β

k̂
, the previous expression becomes

E[F (wk+1)− F ∗] ≤ (1− βµc

k̂
)
η

k̂
+

1

2

β2LM

k̂2
=
k̂ − βµc
k̂2

η +
1

2

β2LM

k̂2

=
k̂ − 1

k̂2
η − βµc− 1

k̂2
η +

1

2

β2LM

k̂2

≤ k̂ − 1

k̂2
η +

−2(βµc− 1)η + β2LM

2k̂2︸ ︷︷ ︸
non positive, by definition of η

≤ k̂ − 1

k̂2 − 1
η ≤ η

k̂ + 1
,

Stochastic Gradient Descent 51

As we promised last week

Let the objective function F : Rd 7→ R be the expected or empirical risk:

F (w) = E[f(w, ξ)] or F (w) =
1

n

n∑
i=1

fi(w).

1. If we pick samples uniformly from a finite training set with
replacement, the SG iterates satisfy

E[|Rn(wk)−R∗n|] = O(
1

k
)

2. If we pick samples in each iteration according to distribution P , the
SG iterates satisfy

E[|R(wk)−R∗|] = O(
1

k
).

Stochastic Gradient Descent 52

Trade-Offs of mini-batch SG method

Compare simple SG to mini-batch SG with mini-batches of size nmb � n

g(wk, ξk) = ∇fik(wk) g(wk, ξk) =
1

|Sk|
∑
i∈Sk

∇fi(wk)

Observe that

- minibatch iterations are nmb times more expensive than SG

- V[g(wk, ξk)], M and MV (assumption 2) are nmb times smaller

Does the variance reduction pay for higher iteration cost?

Stochastic Gradient Descent 53

Trade-Offs of mini-batch SG method

Assume we run minibatch SG with stepsize α and SG with α/nmb and
compare the number of iterations to reach the same optimality gap

mbSG E[F (wk)− F ∗] ≤
αLM

2cµnmb
+ (1− αcµ)k−1

(
F (w1)− F ∗ −

αLM

2cµnmb

)
SG E[F (wk)− F ∗] ≤

αLM

2cµnmb
+ (1− αcµ

nmb
)k−1

(
F (w1)− F ∗ −

αLM

2cµnmb

)
SG needs nmb times more iterations to obtain the optimality gap of

minibatch SG, but each SG iteration is nmb times cheaper.

⇒ The cost of SG and minibatch are the same if we can run minibatch
SG with a stepsize nmb times larger than the SG stepsize, which might
not be possible because of the bound α < µ

LMG <︸︷︷︸
MG≥µ2

1
µL

Stochastic Gradient Descent 54

SG for General Objectives

This is not part of the convex class, it is here to relate SG to the
algorithms that some of you use in the deep learning lecture.

- Many important machine learning models lead to nonconvex
optimization problems.

- Analyzing the SG method when minimizing nonconvex objectives is
more challenging because functions may possess multiple local
minima and other stationary points.

- Two results: one for employing a fixed positive stepsize and one for
diminishing stepsizes.

SG for General Objectives 55

Fixed Stepsize SG for General Objectives

Theorem
If F is an L-smooth function that satisfies Assumption 2, with Finf the
lower bound on the sequence of function values {F (wk)}, and the SG
method is run with positive stepsize α ≤ µ

LMG
, then for all K ∈ N:

E

[
1

K

K∑
k=1

‖∇F (wk)‖2
]
≤ αLM

µ
+ 2

F (w1)− Finf

Kµα

K→∞−−−−→ αLM

µ
.

Observe

1. the asymptotic behavior illustrates that noise in the gradients
inhibits further progress, as happens with the convex case.

2. The average norm of the gradients can be made arbitrarily small by
selecting a small stepsize, but doing so reduces the speed at which
the norm of the gradient approaches its limiting distribution.

SG for General Objectives 56

Proof

Taking the total expectation in Lemma 2 and using the bound
0 < α ≤ µ

LMG

E[F (wk+1)]− E[F (wk)] ≤ −(µ−
1

2
αLMG)αE[‖∇F (wk)‖2] +

1

2
α2LM

≤ −1

2
µαE[‖∇F (wk)‖2] +

1

2
α2LM,

Summing the inequality for k ∈ {1, . . . ,K} and recalling Finf ≤ F (wk),

Finf − F (w1) ≤ E[F (wK+1)]− F (w1) ≤ −
1

2
µα

K∑
k=1

E[‖∇F (wk)‖2] +
1

2
Kα2LM.

Re-arranging terms we obtain the desired result

K∑
k=1

E[‖∇F (wk)‖2] ≤
KαLM

µ
+ 2

F (w1)− Finf

µα
.

SG for General Objectives 57

Interesting Cases

1. if the noise reduces proportionally to ‖∇F (wk)‖2 (M = 0)

K∑
k=1

E[‖∇F (wk)‖2] ≤ KαLM

µ︸ ︷︷ ︸
0

+2
F (w1)− Finf

µα
.

the sum of squared gradients remains finite and {‖∇F (wk)‖2} → 0.

2. in the presence of noise (M > 0) the rhs of

E

[
1

K

K∑
k=1

‖∇F (wk)‖2
]
≤ αLM

µ
+ 2

F (w1)− Finf

Kµα

K→∞−−−−→ αLM

µ
.

gets smaller as K increases and the SG method spends increasingly
more time in regions where the objective has a small gradient.

SG for General Objectives 58

Decreasing Stepsize SG for General Objectives

Theorem
If F is an L-smooth function that satisfies Assumption 2 and the SG
method is run with a fixed stepsize sequence satisfying

∞∑
k=1

αk =∞
∞∑
k=1

α2
k <∞

Then, with AK =
∑K
k=1 αk

E

[
K∑
k=1

αk‖∇F (wk)‖2
]
<∞⇒ E

[
1

AK

K∑
k=1

αk‖∇F (wk)‖2
]

K→∞−−−−→ 0.

Proof.
We proof the implication. The condition

∑∞
k=1 αk =∞ ensures that

AK →∞ as K →∞ and E
[

1
AK

∑K
k=1 αk‖∇F (wk)‖2

]
K→∞−−−−→ 0.

SG for General Objectives 59

Proof

The condition
∑∞
k=1 α

2
k <∞ ensures that {αk} → 0, and we can

assume without loss of generality that αkLMG ≤ µ for all k ∈ N.
Taking the total expectation in Lemma 2 we have

E[F (wk+1)]− E[F (wk)] ≤ −(µ−
1

2
αkLMG)αkE[‖∇F (wk)‖2] +

1

2
α2
kLM

≤ −1

2
µαkE[‖∇F (wk)‖2] +

1

2
α2LM.

Summing the inequality for k ∈ {1, . . . ,K} and recalling Finf ≤ F (wk)

Finf − F (w1) ≤ E[F (wK+1)]− F (w1) ≤ −
1

2
µ

K∑
k=1

αkE[‖∇F (wk)‖2] +
1

2
LM

K∑
k=1

α2
k.

Dividing by µ
2 and rearranging the terms, we obtain

K∑
k=1

αkE[‖∇F (wk)‖2] ≤ 2
F (w1)− Finf

µ
+
LM

µ

K∑
k=1

α2
k. (4.19)

As
∑∞
k=1 α

2
k <∞, the right-hand side converges to a finite limit when

K →∞, which proves E
[∑K

k=1 αk‖∇F (wk)‖2
]
<∞.

SG for General Objectives 60

Consequences of Decreasing Stepsize SG for General

Objectives

Under the theorem’s assumptions, the weighted average norm of the
squared gradients converges to zero even if the gradients are noisy
because

E

[
1

AK

K∑
k=1

αk‖∇F (wk)‖2
]

K→∞−−−−→ 0

Theorem
If F is an L-smooth function that satisfies Assumption 2 and the SG
method is run with a fixed stepsize sequence satisfying

∞∑
k=1

αk =∞
∞∑
k=1

α2
k <∞

Then, the expected optimality gap satisfies the following inequality

lim inf
k→∞

E[‖∇F (wk)‖2] = 0.

SG for General Objectives 61

Work Complexity1

We have discussed the convergence of SG when minimizing an objective
function, but we have not discussed its computational cost. To this goal,
define

h∗ = arg min
h

E[`(h(x), y)] optimal (w.r.t R) predictor function

h∗w = arg min
w

E[`(h(x;w), y)] optimal (w.r.t R) parametric function

h∗n = arg min
w

1

n

n∑
i=1

`(h(xi;w), yi) optimal (w.r.t Rn) parametric function

We will stop the optimization when it reaches a solution h̃n that
minimizes the objective function with ρ accuracy, that is,

Rn(h̃n) ≤ Rn(h∗n) + ρ

1This Section is based on L. Bottou. Stochastic Gradient Descent Tricks. 2012.
Computational Cost of SG Methods 62

Evaluation of Complexity for a Fixed Excess Error

The excess error ε = E[Rn(h̃n)−R(h∗)] can then be decomposed in
three terms

ε = E[Rn(h̃n)−Rn(h∗n)]︸ ︷︷ ︸
εopt

+E[Rn(h∗n)−R(h∗n)]︸ ︷︷ ︸
εest

+E[R(h∗w)−R(h∗)]︸ ︷︷ ︸
εapprox

1. The approximation error εapprox measures how closely functions in H
can approximate the optimal solution h∗.

2. The estimation error εest measures the effect of minimizing the
empirical risk Rn instead of the expected risk R.

3. The optimization error εopt measures the impact of the approximate
optimization on the expected risk.

Computational Cost of SG Methods 63

Small or Large scale Problems

Given constraints on the maximal computation time Tmax and training
set size nmax, this decomposition outlines a trade-off

min
H,ρ,n

εapprox + εest + εopt s.t. n ≤ nmax, T (H, ρ, n) ≤ Tmax

Two cases should be distinguished:

1. small-scale problems are constrained by the maximal number of
examples (n = nmax) because computing time is not an issue
(T (H, ρ, n)� Tmax) and εopt = ρ can be made arbitrarily small.

2. Large-scale learning problems are constrained by the maximal
computing time (T (H, ρ, n) = Tmax) because the supply of training
examples is very large (n� nmax).

Computational Cost of SG Methods 64

Asymptotic Analysis

In the asymptotic regime, the solution of

min
H,ρ,n

εapprox + εopt︸︷︷︸
ρ

+εest s.t. n ≤ nmax, T (H, ε, n) ≤ Tmax

ensures that all the terms decrease at similar rates because the
convergence of the sum is governed by its slowest term. That is:

εapprox ≈ ρ ≈
(

log(n)

n

)β
where εest ∼

(
log(n)

n

)β
β ∈ [0.5, 1].

Computational Cost of SG Methods 65

Simple vs Batch Gradient Method

Recall that gradient descent on an L-smooth and strongly convex
function has a converges rate O(ak), 0 < a < 1.

A batch gradient method achieves ρ-optimality with a computing cost of
the order n log(1

ρ). Within the time budget Tmax, it can achieve

ρ-optimality by processing n ∼ Tmax

log(1
ρ)

examples.

Assuming we operate at the optimum of the approximation, estimation,
optimization trade-off, we can compute the computational cost necessary
to reach a predefined value of the excess error by applying the
equivalences

εapprox ≈ ρ ≈
(

log(n)

n

)β
.

to eliminate the variables n and ρ from the cost.

Computational Cost of SG Methods 66

Simple vs Batch Gradient Method

As SG with decreasing stepsize converges with O(1
k) method can achieve

ρ-optimality with a computing cost of the order 1
ρ .

Fig.: Asymptotic equivalents for batch gradient descent (GD), second order
batch gradient descent (2GD), simple stochastic gradient descent (SGD), and
second order simple stochastic gradient descent (2SGD).

SGD and 2SGD are the worst optimization algorithms but achieve the
fastest convergence speed on the expected risk.

Computational Cost of SG Methods 67

Noise-Reduction Methods

SG suffers from the adverse effect of noisy gradient estimates.

- fixed α: convergence to solution neighborhood of size ∼ noise

- diminishing α: sublinear convergence to the solution

Noise reduction methods reduce noise in the gradient to achieve a linear
rate of convergence

1. dynamic sampling methods: increase the mini-batch size.

2. gradient aggregation: average gradient estimates from past iterates.

Computational Cost of SG Methods 68

Intuition

Recall the fundamental inequality

Eξk [F (wk+1)]− F (wk) ≤ −αk∇F (wk)
TEξk [g(wk, ξk)] +

1

2
α2
kLEξk [‖g(wk, ξk)‖

2]

Which is the rate of decrease in noise that allows a SG method to
converge at a linear rate?

- if −g(wk, ξk) is a descent direction in expectation ⇒ first term < 0

- if Eξk [‖g(wk, ξk)‖2] decreases fast enough (geometrically)

Computational Cost of SG Methods 69

Noise Reduction and Convergence Rate

Theorem
Strongly Convex Objective, Noise Reduction Let F be an L-smooth and
c-stronlgy convex function satisfying a modified Assumption 2, with
constants M ≥ 0 and ζ ∈ (0, 1) such that, for all k ∈ N

Vξk [g(wk, ξk)]≤M +MV ‖∇F (wk)‖2 ≤Mζk−1

Then the expected optimality gap of SG method with a fixed positive
stepsize α ≤ min{ µ

Lµ2
G
, 1
cµ} satisfies

E[F (wk)− F ∗] ≤ ωρk−1 where

{
ω = max{αLMcµ , F (w1)− F ∗}
ρ = max{1− αcµ

2 , ζ} < 1

Computational Cost of SG Methods 70

Proof

Recall Lemma 2

Eξk [F (wk+1)]−F (wk) ≤ −µα‖∇F (wk)‖2 +
α2

2
LEξk [‖g(wk, ξk)‖

2]

≤ −µα‖∇F (wk)‖2 +
α2

2
L
(
Vξk [g(wk, ξk)] + ‖Eξk [g(wk, ξk)]‖

2)
≤ −µα‖∇F (wk)‖2 +

α2

2
L
(
Mζk−1 + µ2

G‖∇F (wk)‖2
)

≤ −(µ− 1

2
αLµ2

G)α‖∇F (wk)‖2 +
1

2
α2LMζk−1

≤ −1

2
µα‖∇F (wk)‖2 +

1

2
α2LMζk−1

≤ −µαc(F (w)− F ∗) + 1

2
α2LMζk−1.

where in

- line 3, we have used Assumption 2
- line 5, α ≤ min{ µ

LM2
G
, 1
cµ}

- line 6, F is c-strongly convex 2c(F (w)− F ∗) ≤ ‖∇F (wk)‖2 ∀w ∈ Rd

.
Computational Cost of SG Methods 71

Proof’

From

Eξk [F (wk+1)]− F (wk) ≤ −µαc(F (w)− F ∗) + 1

2
α2LMζk−1,

we add and substract F ∗ and take total expectations to obtain

E[F (wk+1)− F ∗ ≤ (1− αcµ)E[F (wk)− F ∗] +
1

2
α2LMζk−1

We now use induction to prove the bound on the gap

E[F (wk)− F ∗] ≤ ωρk−1 where

{
ω = max{αLM

cµ
, F (w1)− F ∗}

ρ = max{1− αcµ
2
, ζ} < 1

.

By definition of ω, it holds for k = 1.

Computational Cost of SG Methods 72

Proof”

Assume that it holds for k ≥ 1 and use E[F (wk)− F ∗] ≤ ωρk−1 in

E[F (wk+1)− F ∗ ≤ (1− αcµ)E[F (wk)− F ∗] +
1

2
α2LMζk−1

≤ (1− αcµ)ωρk−1 +
1

2
α2LMζk−1

≤ ωρk−1
(

1− αcµ+
α2LM

2ω

(
ζ

ρ

)k−1)

≤ ωρk−1
(

1− αcµ+
α2LM

2ω

)
as ρ > ζ

≤ ωρk−1
(

1− αcµ+
αcµ

2

)
as ω >

αLM

cµ

≤ ωρk−1
(

1− αcµ

2

)
≤ ωρk−1 as 0 < α <

1

cµ
.

Computational Cost of SG Methods 73

Dynamic Sample Size Methods

Mini-batch SG where minibatch size grows geometrically |Sk| = dτk−1e{
g(wk, ξk) = 1

|Sk|
∑
i∈Sk ∇f(wk; ξk,i)

wk+1 = wk − αg(wk, ξk)
. (5.20)

Theorem
Let {wk} be the iterates generated by the dynamic sample size method
(5.20) with unbiased gradient estimates, then, the variance condition
Vξk [g(wk, ψk)] ≤Mζk−1 is satisfied and, if the other assumptions of the
previous Theorem hold, the expected optimality gap vanishes linearly.

Computational Cost of SG Methods 74

Dynamic Sample Size Methods

For instance, if the {ξk,i}i∈Sk are drawn independently according to P
and we each stochastic gradient ∇f(wk; ξk,i) has an expectation equal to
the true gradient ∇F (wk) with a variance bounded by M ≥ 0, then

Vξk [g(wk, ξk)] ≤ Vξk [∇f(wk; ξk,i)]

nk
≤ M

nk
≤ M

dτk−1e
≤Mζk−1.

Question: Is the method really linearly convergent if the per-iteration
cost increases without bound with the minibatch size?

Theorem
Let F be an L-smooth and c-strongly convex function satisfying
Assumption 2, with Finf = F ∗, and run the dynamic sampling SG method
with a positive stepsize α ≤ min{ µ

Lµ2
G
, 1
cµ} and τ ∈ (1, (1− αcµ

2)−1).

Then, the total number of evaluations of a stochastic gradient of the
form ∇f(wk; ξk,i) required to obtain E[F (wk)− F ∗] ≤ ε is O(1

ε).

Computational Cost of SG Methods 75

Gradient Aggregation Methods

Rather than reducing the variance of the stochastic gradients by using
more samples in each iteration, gradient aggregation methods achieve a
lower variance by reusing previously computed information.

Estimate the bias of the SG gradient estimates and correct it

1. SVGR: each iteration is as costly as batch SG

2. SAGA: each iteration as cheap as simple SG, but large memory
requirements

Computational Cost of SG Methods 76

SVGR: Stochastic Variance Reduced Gradient

SVGR operates in cycles.

1. at the beginning of each cycle, an iterate wk is available at which
the algorithm computes a batch gradient

∇Rn(wk) =
1

n

n∑
i=1

∇fi(wk)

2. compute wk+1 in m inner iterations with ij ∈ {1, . . . , n} random.

g̃j = ∇fij (w̃j)− (∇fij (wk)−Rn(wk))︸ ︷︷ ︸
bias in gradient estimate ∇fij (wk)
because Eij [∇fij (wk)]=Rn(wk)

(5.21)

w̃j+1 = w̃j − αg̃j . (5.22)

In every iteration, SVGR randomly draws a stochastic gradient ∇fij (w̃k)
and corrects it based on a perceived bias, i.e., g̃j is an unbiased estimate
of ∇Rn(w̃j) with smaller variance than the SG estimate g̃j = ∇fij (w̃j).

Computational Cost of SG Methods 77

SVGR: Stochastic Variance Reduced Gradient

Choose an initial iterate w1 ∈ Rd, stepsize α > 0, and integer m.
for k = 1, 2, . . . do

Compute the batch gradient ∇Rn(wk).
Initialize w̃1 ← wk.
for j = 1, . . . ,m do

Chose ij uniformly from {1, . . . , n}.
Set g̃j ← ∇fij (w̃j)− (∇fij (wk)−∇Rn(wk)).
Set w̃j+1 ← w̃j − αg̃j .

end for
Option (a): Set wk+1 = w̃m+1

Option (b): Set wk+1 = 1
m

∑m
j=1 w̃j+1

Option (c): Choose j uniformly from {1, . . . ,m} and set
wk+1 = w̃j+1.
end for

Computational Cost of SG Methods 78

SAGA

The SAGA only computes batch gradients at the initial point but needs to
store n stochastic gradient vectors ∇fi(w[1]),∇fi(w[2]), . . . ,∇fi(w[n]),
where w[i] is the latest iterate at which ∇fi was evaluated.

In each iteration, SAGA computes a stochastic vector gk as the average
of stochastic gradients evaluated at previous iterates. Let j ∈ {1, . . . , n}
be chosen at random,

gk = ∇fj(wk)−∇fj(w[j]) +
1

n

n∑
i=1

fi(w[i])

As Ej∈{1,...,n}[gk] = ∇Rn(wk), SAGA uses unbiased gradient estimates
with variance expected to be less than the variance of simple SG.

Computational Cost of SG Methods 79

SAGA

Choose an initial iterate w1 ∈ Rd and stepsize α > 0.
for i = 1, . . . , n do

Compute ∇fi(w1).
Store ∇fi(w[i])← ∇fi(w1).

end for
for k = 1, 2, . . . do

Choose j uniformly in {1, . . . , n}.
Compute ∇fj(wk).
Set gk ← ∇fj(wk)−∇fj(w[j]) + 1

n

∑n
i=1∇fi(w[i]).

Store ∇fj(w[j])← ∇fj(wk).
Set wk+1 ← wk − αgk.

end for

Computational Cost of SG Methods 80

	Optimization Problems in Machine Learning
	Optimization Methods
	Stochastic Gradient Descent
	SG for Strongly Convex Objectives

	SG for General Objectives
	Computational Cost of SG Methods
	Noise-Reduction Methods

