Convex Optimization for Machine Learning and Computer Vision

Lecture: Dr. Virginia Estellers Exercises: Emanuel Laude Winter Semester 2017/18 Computer Vision Group Institut für Informatik Technische Universität München

Weekly Exercises 10

Room: 02.09.023

Friday, 02.02.2018, 09:15-11:00

Submission deadline: Monday, 29.01.2018, 10:15, Room 02.09.023

Theory: Recap

(0+14 Points)

Exercise 1 (4 Points). Compute the convex conjugates of the following functions:

1. $f_1: \mathbb{R} \to \mathbb{R} \cup \{\infty\}$ where $f_1(x) = \sqrt{1+x^2}$.

2. $f_2: \mathbb{R}^n \to \mathbb{R} \cup \{\infty\}$ where $f_2(x) = \log \left(\sum_{i=1}^n e^{x_i}\right)$.

Don't forget to specify the domains $dom(f_1^*), dom(f_2^*)$.

Solution. 1. The conjugate is defined as

$$f_1^*(y) = \sup_x xy - \sqrt{1+x^2}.$$

For |y| > 1, the supremum is $+\infty$, since due to the subadditivity of $\sqrt{\cdot}$ we have

$$xy - \sqrt{1 + x^2} \ge xy - \sqrt{1} - \sqrt{x^2} = xy - |x| - 1,$$

and the choice $x=t \mathrm{sign}(y),\, t\to +\infty$ yields t(|y|-1)-1 with drives the lower bound to infinity.

Now take |y| < 1. Setting the derivative of the function inside the supremum to zero yields

$$y = \frac{x}{\sqrt{1+x^2}} \Rightarrow x = \pm \frac{y}{\sqrt{1-y^2}}.$$

Taking the choice $x = \frac{y}{\sqrt{1-y^2}}$ (it leads to a larger value inside the supremum), we have:

$$f^*(y) = y \frac{y}{\sqrt{1 - y^2}} - \sqrt{1 + \frac{y^2}{1 - y^2}} = \frac{y^2}{\sqrt{1 - y^2}} - \sqrt{\frac{1}{1 - y^2}} = -\sqrt{1 - y^2},$$

with $dom(f^*) = [-1, 1].$

2. The conjugate is defined as:

$$f_2^*(y) = \sup_{x \in \mathbb{R}^n} \sum_{i=1}^n x_i y_i - \log \left(\sum_{i=1}^n \exp(x_i) \right).$$

We start by computing dom (f_2^*) . Take some $y_i < 0$, then set $x_i = -a$ and $x_j = 0$ for $i \neq j$. Then the conjugate simplifies to

$$\sup_{a \in \mathbb{R}} -ay_i - \log(n - 1 + \exp(-a)),$$

and one can see that for $a \to \infty$ this becomes $+\infty$.

Next, take $x_i = a \cdot \text{sgn}(y_i)$, then we have for the conjugate:

$$\sup_{a \in \mathbb{R}} a \|y\|_{1} - \log \left(\sum \exp(a \cdot \operatorname{sgn}(y_{i})) \right)$$

$$= \sup_{a \in \mathbb{R}} a \|y\|_{1} - a - \log \left(\sum \exp(\operatorname{sgn}(y_{i})) \right)$$

$$= \sup_{a \in \mathbb{R}} a(\|y\|_{1} - 1) - \log \left(\sum \exp(\operatorname{sgn}(y_{i})) \right),$$
(1)

which becomes infinite if $||y||_1 \neq 1$.

Setting the gradient of the function inside the supremum to zero yields

$$y_i = \frac{\exp(x_i)}{\sum_j \exp(x_j)} \Leftrightarrow x_i = \log y_i \sum_j \exp(x_j)$$

First, we conclude that $dom(f_2^*) = \{y \in \mathbb{R}^n : y_i \ge 0, ||y|| = 1\}$. Plugging in x_i into the function inside the supremum yields

$$\sum_{i=1}^{n} y_i \log y_i \sum_{j} \exp(x_j) - \log \left(\sum_{i=1}^{n} \exp(\log y_i \sum_{j} \exp(x_j)) \right)$$

$$= \sum_{i=1}^{n} y_i \log y_i + y_i \log \sum_{j} \exp(x_j) - \log \left(\sum_{i=1}^{n} y_i \sum_{j} \exp(x_j) \right)$$

$$\stackrel{\|y\|_1=1}{=} \sum_{i=1}^{n} y_i \log y_i + \log \sum_{j} \exp(x_j) - \log \sum_{j} \exp(x_j)$$

$$= \sum_{i} y_i \log y_i.$$
(2)

Hence, $f^*(y) = \sum_i y_i \log y_i + \delta_{\Delta^n}(y)$.

Definition. A function $g: \mathbb{R}^n \to \mathbb{R} \cup \{\infty\}$ is called 1-homogeneous if

$$g(\alpha x) = \alpha g(x),$$

for all $\alpha \geq 0$.

Exercise 2 (4 Points). Let $g: \mathbb{R}^n \to \mathbb{R} \cup \{\infty\}$ be convex, closed, proper and 1-homogeneous. Show that the proximity operator of the sum $\|\cdot\|_2 + g$ is the composition of the proximity operators of $\|\cdot\|_2$ and g, i.e.

$$\operatorname{prox}_{\|\cdot\|_2+q} = \operatorname{prox}_{\|\cdot\|_2} \circ \operatorname{prox}_q.$$

Solution. Let $y \in \text{dom}(g)$. We have the following optimality conditions for $\text{prox}_{\|\cdot\|_2+g}(y)$, $\text{prox}_{\|\cdot\|_2}(\text{prox}_g(y))$ and $\text{prox}_g(y)$:

$$0 \in \operatorname{prox}_{\|\cdot\|_{2}+g}(y) - y + \partial(\|\cdot\|_{2} + g)(\operatorname{prox}_{\|\cdot\|_{2}+g}(y))$$
(3)

$$0 \in \operatorname{prox}_{\|\cdot\|_2}(\operatorname{prox}_g(y)) - \operatorname{prox}_g(y) + \partial(\|\cdot\|_2)(\operatorname{prox}_{\|\cdot\|_2}(\operatorname{prox}_g(y))) \tag{4}$$

$$0 \in \operatorname{prox}_{q}(y) - y + \partial g(\operatorname{prox}_{q}(y)) \tag{5}$$

Adding the last two inclusions yields:

$$0 \in \operatorname{prox}_{\|\cdot\|_2}(\operatorname{prox}_g(y)) - y + \partial g(\operatorname{prox}_g(y)) + \partial(\|\cdot\|_2)(\operatorname{prox}_{\|\cdot\|_2}(\operatorname{prox}_g(y))). \tag{6}$$

Assume that it holds for all $x \in \mathbb{R}^n$

$$\partial g(\operatorname{prox}_{\|\cdot\|_2}(x)) \supseteq \partial g(x).$$
 (7)

Then for $x := \operatorname{prox}_g(y)$, and due to (??) and the sum rule of the subdifferential $\partial(\|\cdot\|_2 + g) \supseteq \partial\|\cdot\|_2 + \partial g$ we have that

$$0 \in \operatorname{prox}_{\|\cdot\|_2}(\operatorname{prox}_g(y)) - y + \partial g(\operatorname{prox}_{\|\cdot\|_2}(\operatorname{prox}_g(y))) + \partial (\|\cdot\|_2)(\operatorname{prox}_{\|\cdot\|_2}(\operatorname{prox}_g(y))) \\ \subset \operatorname{prox}_{\|\cdot\|_2}(\operatorname{prox}_g(y)) - y + \partial (g + \|\cdot\|_2)(\operatorname{prox}_{\|\cdot\|_2}(\operatorname{prox}_g(y))).$$

This shows that $\operatorname{prox}_{\|\cdot\|_2}(\operatorname{prox}_g(y))$ satisfies (??) and therefore $\operatorname{prox}_{\|\cdot\|_2}(\operatorname{prox}_g(y)) = \operatorname{prox}_{\|\cdot\|_2+g}(y)$.

It remains to prove the sufficient condition (??). Clearly, for any $x, y \in \mathbb{R}^n$ with $x \perp y$ we have that $||x + y||_2 \ge ||y||_2$, since $x \perp y$ implies $\langle x, y \rangle = 0$. Then we have that

$$\min_{x} \frac{1}{2} \|x - y\|_{2}^{2} + \|x\|_{2} = \min_{\lambda, z \perp y} \frac{1}{2} \|z + \lambda y - y\|_{2}^{2} + \|z + \lambda y\|_{2}$$

$$= \min_{\lambda} \frac{1}{2} \|\lambda y - y\|_{2}^{2} + \|\lambda y\|_{2}$$

$$= \min_{\lambda > 0} \frac{1}{2} (\lambda - 1)^{2} \|y\|_{2}^{2} + |\lambda| \|y\|_{2}.$$

The constraint in the last equality can be seen as follows: Suppose $\lambda < 0$. Then increasing it to zero decreases both summands of the objective. Therefore, we have that $\operatorname{prox}_{\|\cdot\|_2}(y) = \lambda y$ for some $\lambda \geq 0$ and clearly $\operatorname{prox}_{\|\cdot\|_2}(y) = 0 \iff y = 0$. Since g is 1-homogeneous, its subdifferential is scaling invariant, meaning that $p \in \partial g(y) \implies p \in \partial g(\lambda y)$ for $\lambda > 0$, we have that (for $y \neq 0$) there exists $\lambda > 0$ so that,

$$\partial g(y) \subseteq \partial g(\lambda y) = \partial g(\operatorname{prox}_{\|\cdot\|_2}(y)).$$

It remains to prove the scaling invariance of the subdifferential for 1-homogeneous g. Let $\lambda > 0$: Via the substitution $z' = \frac{1}{\lambda}z$ we obtain that

$$\begin{aligned} p &\in \partial g(y) \implies \langle p, z - y \rangle + g(y) \leq g(z), \quad \forall z \in \mathrm{dom}(g) \\ &\implies \langle p, \lambda z - \lambda y \rangle + \lambda g(y) \leq \lambda g(z), \quad \forall z \in \mathrm{dom}(g) \\ &\implies \langle p, \lambda z - \lambda y \rangle + g(\lambda y) \leq g(\lambda z), \quad \forall z \in \mathrm{dom}(g) \\ &\implies \langle p, z' - \lambda y \rangle + g(\lambda y) \leq g(z'), \quad \forall z' \in \mathrm{dom}(g) \\ &\implies p \in \partial g(\lambda y). \end{aligned}$$

Exercise 3 (6 Points). Let C be a nonempty, closed, convex subset of \mathbb{R}^n . For each $i \in \{1, ..., m\}$, let $\alpha_i \in (0, 1)$, $\omega_i \in (0, 1)$ and $\Phi_i : C \to \mathbb{R}^n$ be an α_i -averaged operator. Prove the following statements:

• Φ_i is α_i -averaged iff

$$\|\Phi_i(u) - \Phi_i(v)\|_2^2 + \frac{1 - \alpha_i}{\alpha_i} \|(I - \Phi_i)(u) - (I - \Phi_i)(v)\|_2^2 \le \|u - v\|_2^2,$$

for all $u, v \in C$.

• If $\sum_{i=1}^{m} \omega_i = 1$ and $\alpha = \max_{1 \leq i \leq m} \alpha_i$, then

$$\Phi = \sum_{i=1}^{m} \omega_i \Phi_i$$

is α -averaged.

Solution. By the definition of the averaged operator, $\Phi_i = (1 - \alpha_i)I + \alpha_i\Psi_i$ for some nonexpansive operator $\Psi_i : C \to \mathbb{R}^n$, or $\Psi_i = (1 - \frac{1}{\alpha_i})I + \frac{1}{\alpha_i}\Phi_i$. $\Leftrightarrow \Psi_i = (1 - \frac{1}{\alpha_i})I + \frac{1}{\alpha_i}\Phi_i$ is nonexpansive.

$$\|\Psi_{i}(u) - \Psi_{i}(v)\| \leq \|u - v\|$$

$$\Leftrightarrow \quad \alpha_{i}^{2} \|u - v\|^{2} \geq \|((\alpha_{i} - 1)I + \Phi_{i})(u) - ((\alpha_{i} - 1)I + \Phi_{i})(v)\|^{2}$$

$$= \|\Phi_{i}(u) - \Phi_{i}(v)\|^{2} + (\alpha_{i} - 1)^{2} \|u - v\|^{2}$$

$$+ 2(\alpha_{i} - 1)\langle u - v, \Phi_{i}(u) - \Phi_{i}(v)\rangle$$

$$\Leftrightarrow \|\Phi_i(u) - \Phi_i(v)\|^2 + (1 - 2\alpha_i)\|u - v\|^2 \le (1 - \alpha_i)\|(I - \Phi_i)(u) - (I - \Phi_i)(v)\|^2 - (1 - \alpha_i)\|u - v\|^2 - (1 - \alpha_i)\|\Phi_i(u) - \Phi_i(v)\|^2$$

since
$$2\langle u-v, \Phi_i(u)-\Phi_i(v)\rangle = \|(I-\Phi_i)(u)-(I-\Phi_i)(v)\|^2 - \|u-v\|^2 - \|\Phi_i(u)-\Phi_i(v)\|^2$$
.

We have the estimate

$$\begin{split} &\|\Phi(u) - \Phi(v)\|_{2}^{2} + \frac{1-\alpha}{\alpha} \|(I-\Phi)(u) - (I-\Phi)(v)\|_{2}^{2} \\ &= \left\| \sum_{i=1}^{m} \omega_{i} (\Phi_{i}(u) - \Phi_{i}(v)) \right\|_{2}^{2} + \frac{1-\alpha}{\alpha} \left\| \left(I - \sum_{i=1}^{m} \omega_{i} \Phi_{i} \right) (u) - \left(I - \sum_{i=1}^{m} \omega_{i} \Phi_{i} \right) (v) \right\|_{2}^{2} \\ &\leq \sum_{i=1}^{m} \omega_{i} \|\Phi_{i}(u) - \Phi_{i}(v)\|_{2}^{2} + \frac{1-\alpha}{\alpha} \left\| \sum_{i=1}^{m} \omega_{i} ((I-\Phi_{i})(u) - (I-\Phi_{i})(v)) \right\|_{2}^{2} \\ &\leq \sum_{i=1}^{m} \omega_{i} \|\Phi_{i}(u) - \Phi_{i}(v)\|_{2}^{2} + \frac{1-\alpha}{\alpha} \sum_{i=1}^{m} \omega_{i} \|(I-\Phi_{i})(u) - (I-\Phi_{i})(v)\|_{2}^{2} \\ &= \sum_{i=1}^{m} \omega_{i} \left(\|\Phi_{i}(u) - \Phi_{i}(v)\|_{2}^{2} + \frac{1-\alpha}{\alpha} \|(I-\Phi_{i})(u) - (I-\Phi_{i})(v)\|_{2}^{2} \right). \end{split}$$

Since $1 > \alpha \ge \alpha_i > 0$ for all i we have that $\frac{1}{\alpha} - 1 \le \frac{1}{\alpha_i} - 1$. Then we can further bound:

$$\dots = \sum_{i=1}^{m} \omega_i \left(\|\Phi_i(u) - \Phi_i(v)\|_2^2 + \frac{1-\alpha}{\alpha} \|(I-\Phi_i)(u) - (I-\Phi_i)(v)\|_2^2 \right)$$

$$\leq \sum_{i=1}^{m} \omega_i \left(\|\Phi_i(u) - \Phi_i(v)\|_2^2 + \frac{1-\alpha_i}{\alpha_i} \|(I-\Phi_i)(u) - (I-\Phi_i)(v)\|_2^2 \right)$$

$$\leq \sum_{i=1}^{m} \omega_i \|u-v\|_2^2 = \|u-v\|_2^2.$$