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Theory: Recap (0+14 Points)
Exercise 1 (4 Points). Compute the convex conjugates of the following functions:
1. fi :R = RU{oc} where fi(z) = V1 + 22.
2. fo: R" = RU{oo} where fo(x) =log (3 i, ™).
Don’t forget to specify the domains dom(f;), dom(f5).

Solution. 1. The conjugate is defined as

fily) =sup zy — vV1+ 22

T

For |y| > 1, the supremum is +oo, since due to the subadditivity of /- we

have
vy —V1+a2>ay —V1— Va2 =ay—|z| - 1,

and the choice z = tsign(y), t — +oo yields t(Jy| — 1) — 1 with drives the lower
bound to infinity.

Now take |y| < 1. Setting the derivative of the function inside the supremum
to zero yields

y:ij:iL
V1422 V1—y?

Taking the choice x = \/1+7 (it leads to a larger value inside the supremum),

we have:

I P Y T R Y S
V1—1? -y /1—y? 1—y? 7

with dom(f*) = [—1, 1].



2. The conjugate is defined as:

We start by computing dom(f;). Take some y; < 0, then set x; = —a and
xj; = 0 for i # j. Then the conjugate simplifies to

sup — ay; —log (n — 1+ exp(—a)),
a€R

and one can see that for a — oo this becomes +oo.

Next, take x; = a - sgn(y;), then we have for the conjugate:
ilelﬂg allyll; — log (Z exp(a sgn(yi))>
= sup a lyll, — a — log (Z exp(sgn(yz))) (1)
= sup aflyl, 1) ~log (3 exp(smn(y:))

which becomes infinite if ||y||, # 1.

Setting the gradient of the function inside the supremum to zero yields
Zj exp(;) ; ’

First, we conclude that dom(f;) ={y € R" : y; > 0, ||y|| = 1}. Plugging in z;
into the function inside the supremum yields

> yilogy Z exp(z;) — log (Z exp(logy; » em(%)))

P . — -

= Zyz log yi + i logZeXp z;) — log (Z i Zexp(mj)>
i=1 j

=1

vl =1 Z y; log y; + log Z exp(z;) — log Z exp(z;)
J
= Z Y; IOg Yi.

Hence, f*(y) = >_, yilogyi + 0an(y).

Definition. A function ¢g : R* — R U {oo} is called 1-homogeneous if

(2)

glax) = ag(x),

for all a > 0.



Exercise 2 (4 Points). Let g : R* — R U {oco} be convex, closed, proper and
I-homogeneous. Show that the proximity operator of the sum | - ||z + ¢ is the
composition of the proximity operators of || - || and g, i.e.

pI‘OX”,”2+g = prOX”_H2 o pI'OXg.

Solution. Let y € dom(g). We have the following optimality conditions for PIOX|(.|,+g (y),
prox ., (prox,(y)) and prox,(y):

0 € ProxX|.,+4(y) —y + (| - [l2 + ) (Prox.|,44(y)) (3)
0 € prox, (prox,(y)) — prox,(y) + (| - [l2) (prox;., (prox,(y))) (4)
0 € prox,(y) — y + dg(prox,(y)) (5)

Adding the last two inclusions yields:

0 € prox, (prox,(y)) — y + dg(prox,(y)) + (|| - [|2) (prox)., (prox,(y))).  (6)

Assume that it holds for all z € R™

dg(prox ., (z)) 2 Og(x). (7)

Then for z := prox,(y), and due to (?7) and the sum rule of the subdifferential
A llz4+9) 29| - |l2 + Og we have that

0 € prox;, (prox,(y)) — y + dg(prox ., (prox,(y))) + (| - [l2) (prox;, (prox,(y)))
C proxy., (prox,(y)) —y + (g + || - [[2) (prox;., (prox,(y)))-

This shows that prox,(prox,(y)) satisfies (?7) and therefore prox, (prox,(y)) =
PLOX| 1,14 (Y)-

It remains to prove the sufficient condition (??). Clearly, for any x,y € R™ with
z L y we have that ||z + y||2 > ||y||2, since z L y implies (z,y) = 0. Then we have
that

1 1
win 2 — g3+ el = uin 2z 4 2y — gl + 24wl
o1
= min 2y~ ol + ol
o1
= min (A — D2(|lyl3 + Allyll2.

The constraint in the last equality can be seen as follows: Suppose A < 0. Then
increasing it to zero decreases both summands of the objective. Therefore, we have
that prox;,(y) = Ay for some A > 0 and clearly prox,(y) = 0 <= y = 0.
Since g is 1-homogeneous, its subdifferential is scaling invariant, meaning that p €
Jg(y) = p € dg(\y) for A > 0, we have that (for y # 0) there exists A > 0 so
that,

dg(y) € dg(\y) = 9g(prox;., (v))-

3



It remains to prove the scaling invariance of the subdifferential for 1-homogeneous
g. Let A > 0: Via the substitution 2’ = 1z we obtain that

p€9g(y) = (p.2—y)+9(y) <g(2), Vz e dom(g)
== <p Az = Ay) + Ag(y) < Ag(2), Vz € dom(g)
= (p, Az = My) +9(\y) < g(\2), Vz € dom(g)
— (0.2 = M\y) +g(\y) < g(¢'), V' € dom(g)
= p € 9g(\y).

Exercise 3 (6 Points). Let C' be a nonempty, closed, convex subset of R". For
each i € {1,...,m}, let o; € (0,1), w; € (0,1) and ®; : C — R" be an «;-averaged
operator. Prove the following statements:

o &, is ay-averaged iff

1l -«

1©:(w) — s(w)][5 + S = @) () = (I = @) ()3 < Ju—ol3,

for all u,v € C.
o If 221 Wi = 1 and o = maxi<j<m O, then

m

i=1
is a-averaged.

Solution. By the definition of the averaged operator, ®; = (1 — ;) + a;\V; for
some nonexpansive operator ¥; : ¢ — R" or ¥; = (1 — él)[ + éZ(I)Z A=
(1 —1)I+ 1 ®;is nonexpansive.

1Wi(u) = W) ]| < Jlu— o]
& afllu =l > [[((e: = DI+ @) (u) — (o = DI + ) (v)|?

= [|®;(u) — ;(0)[I” + (@i = 1)*[Ju — v]|?
+2(a; — D) {u — v, D;(u) — P;(v))

& [[@i(u) = 2i()[* + (1 = 200) Ju — vl < (1= i) [|(1 — ®3)(u) — (1 — ) (v)|*
— (L= ag)flu = v]* = (1 = o) [| () — Ti(v)[|*

since 2(u—v, ®;(u) =@;(v)) = [[(I—=0:) (u) = (I = ;) () I = [[u—v][* = [|s(u) = ;s (v) ||



We have the estimate

() = D)3 + 21 — @)(w) — (1 — ) (v)]

_ iwi(@(u)—@i(v)) : L-a ( sz > (uéwi@i) (v) :
<§:%H¢ )5+ (I — ;) (I—¢0@D:
géMMM) )2+ (T = @) (1) — (1 = &) ()]
:i?%@@w—@wm+l u>¢mm—u—@mw®.

Since 1 > o > «; > 0 for all ¢ we have that i -

bound:
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1 < = —1. Then we can further

<I—@mo—u—¢mmﬁ>

1 ;ZO@' (I — &) (u) — (I — CI%)(U)H%)

willw = vl3 = [lu—v]3.



