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Theory: Convex Sets and Functions (12+8 Points)
Exercise 1 (4 Points). Let f : Rn → R ∪ {+∞} be proper. Prove the equivalence
of the following statements:

• f is convex.

• epi(f) :=

{(
x
y

)
∈ Rn+1 : f(x) ≤ y

}
is convex.

Solution. Let f be convex, λ ∈ [0, 1] and (x1, y1), (x2, y2) ∈ epi(f). This means
f(x1) ≤ y1 < ∞ and f(x2) ≤ y2 < ∞ and therefore x1, x2 ∈ dom(f). Due to the
convexity of f we have that:

1. dom(f) convex and therefore λx1 + (1− λ)x2 ∈ dom(f), and

2. f(λx1 + (1− λ)x2) ≤ λf(x1) + (1− λ)f(x2) ≤ λy1 + (1− λ)y2.

This means that(
λx1 + (1− λ)x2

λy1 + (1− λ)y2

)
= λ

(
x1

y1

)
+ (1− λ)

(
x2

y2

)
∈ epi(f)

and therefore epi(f) convex. Let conversely epi(f) be convex and x1, x2 ∈ dom(f) :=
{x ∈ Rn : f(x) < ∞}. By definition of the epigraph set (x1, f(x1)), (x2, f(x2)) ∈
epi(f) and due to the convexity of epi(f)

λ

(
x1

f(x1)

)
+ (1− λ)

(
x2

f(x2)

)
∈ epi(f).

This means
f(λx1 + (1− λ)x2) ≤ λf(x1) + (1− λ)f(x2).

It remains to show that dom(f) is convex. We have:

dom(f) = {x ∈ Rn : f(x) < ∞}
= {x ∈ Rn : ∃ y ∈ R : f(x) ≤ y}
= {x ∈ Rn : ∃ y ∈ R s.t. (x, y) ∈ epi(f)}

Since epi(f) is convex it immediatly follows, that dom(f) is convex. Overall this
proves that f convex.
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Exercise 2 (4 Points). Let g : Rn → R∪{+∞} be convex. Show that the perspec-
tive function f : Rn × R → R ∪ {+∞} of g given as

f(x, t) :=

{
t g

(
x
t

)
if t > 0 and x

t
∈ dom(g)

+∞ otherwise,

is convex.

Solution. Let λ ∈ [0, 1], and (x1, t1), (x2, t2) ∈ dom(f). That means x1, x2 ∈ Rn

and t1, t2 > 0 s.t. x1

t1
, x2

t2
∈ dom(g). We have:

f(λx1 + (1− λ)x2, λt1 + (1− λ)t2) = (λt1 + (1− λ)t2) g

(
λx1 + (1− λ)x2

λt1 + (1− λ)t2

)
= (λt1 + (1− λ)t2) g

(
λt1

x1

t1
+ (1− λ)t2

x2

t2

λt1 + (1− λ)t2

)
= (λt1 + (1− λ)t2)

g

 λt1
λt1 + (1− λ)t2

x1

t1
+

(1− λ)t2
λt1 + (1− λ)t2

x2

t2︸ ︷︷ ︸
:=α

x1
t1

+(1−α)
x2
t2

, 0≤α≤1


≤ (λt1 + (1− λ)t2)(

λt1
λt1 + (1− λ)t2

g

(
x1

t1

)
+

(1− λ)t2
λt1 + (1− λ)t2

g

(
x2

t2

))
= λt1 g

(
x1

t1

)
+ (1− λ)t2 g

(
x2

t2

)
< +∞

The above computation shows that both f is convex on its domain

dom(f) =
{
(x, t) ∈ Rn+1 : t > 0,

x

t
∈ dom(g)

}
and dom(f) is a convex set. This implies that f is convex.

Exercise 3 (4 Points). Let ∅ 6= X ⊂ Rn. Prove the equivalence of the following
statements:

• X is closed.

• Every convergent sequence {xn}n∈N ⊂ X attains its limit in X.

Solution. Let X be closed. By definition this means that the complement of X
given as XC := Rn \X is open meaning that for all x ∈ XC there exists ε > 0 s.t.
the ball Bε(x) is entirely contained in XC :

Bε(x) ∩X = ∅.
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Suppose that there exists a convergent sequence X ⊃ {xn}n∈N → x with x /∈ X.
However, by definition of convergence for all ε > 0 there exists N ∈ N s.t.

X 3 xn ∈ Bε(x)

for all n ≥ N , which contradicts the assumption. Let conversely X not be closed
(not the same as open). That means there exists x /∈ X s.t. for all ε > 0 it holds
that Bε(x)∩X 6= ∅. This means that for all εn := 1

n
> 0 there exists xn ∈ Bε(x)∩X.

By construction we have a sequence {xn}n∈N converging to x /∈ X but with elements
in X.

Exercise 4 (4 Points). Let X ⊂ Rn open and convex and let f : X → R be twice
continuously differentiable. Prove the equivalence of the following statements:

• f is convex.

• For all x ∈ X the Hessian ∇2f(x) is positive semidefinite (∀ v ∈ Rn : v>∇2f(x)v ≥
0).

Hints: You can use that for x, y ∈ X it holds that f is convex iff

(y − x)>∇f(x) ≤ f(y)− f(x).

Further recall that there are two variants of the Taylor expansion:

f(x+ tv) = f(x) + tv>∇f(x) +
t2

2
v>∇2f(x)v + o(t2)

with limt→0
o(t2)
t2

= 0 and

f(x+ v) = f(x) + v>∇f(x) +
1

2
v>∇2f(x+ tv)v

for appropriate t ∈ (0, 1).

Solution. Let f be convex, x ∈ X and v ∈ Rn. Since X is open there exists τ > 0
s.t. for all t ∈ (0, τ ] we have that x + tv ∈ X. Using the Taylor expansion given in
the hint we obtain

0
Hint
≤ f(x+ tv)− f(x)− tv>∇f(x) =

t2

2
v>∇2f(x)v + o(t2)

Multiplying both sides with 2
t2

yields

0 ≤ v>∇2f(x)v + 2
o(t2)

t2︸ ︷︷ ︸
→0

.

Let conversely ∇2f(z) be positive semidefinite for all z ∈ X and let x, y ∈ X. Using
the Taylor expansion we have

f(y) = f(x+(y−x)) = f(x)+(y−x)>∇f(x)+
1

2
(y − x)>∇2f(x+ t(y − x))(y − x)︸ ︷︷ ︸

≥0 by assumption.
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and therefore
f(y)− f(x) ≥ (y − x)>∇f(x),

which means that f is convex.

Exercise 5 (4 Points). Let X ⊂ Rn open and convex, A ∈ Rn×n positive semidef-
inite, b ∈ Rn, c ∈ R. Show that that the quadratic form f : X → R defined
as

f(x) :=
1

2
x>Ax+ b>x+ c,

is convex.

Solution. To show that f is convex it suffices to show that the Hessian ∇2f(x) is
positive semidefinite, since f is twice continuously differentiable. We start rewriting
f(x) in terms of finite sums:

f(x) =
1

2

n∑
i=1

xi

n∑
j=1

aijxj +
n∑

i=1

xibi + c

=
1

2

n∑
i=1

xi

n∑
j=1,
j 6=i

aijxj +
1

2

n∑
i=1

aiix
2
i +

n∑
i=1

xibi + c

We now proceed computing the first and second order partial derivatives:

∂f(x)

∂xk

=
1

2

∑
j=1,
j 6=k

akjxj +
1

2

∑
i=1,
i 6=k

aikxi + akkxk + bk

=
1

2

∑
j=1

akjxj +
1

2

∑
i=1

aikxi + bk

Then we have for the gradient of f :

∇f(x) =
1

2
(A+ A>)x+ b.

The second order derivatives are given as:

∂2f(x)

∂x2
k

=
1

2
akk +

1

2
akk = akk,

and
∂2f(x)

∂xk∂xl

=
1

2
akl +

1

2
alk.

The Hessian is then given as

∇2f(x) =
1

2
(A+ A>).

Since A is positive semidefinite also the Hessian ∇2f(x) is positive semidefinite:

v>
1

2
(A+ A>)v = v>Av ≥ 0.
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Programming: Inpainting (12 Points)
Exercise 6 (12 Points). Write a MATLAB program that solves the inpainting
problem for the vegetable image:

min
u∈Rn×m

∑
i,j

(ui,j − ui−1,j)
2 + (ui,j − ui,j−1)

2 s.t. ui,j = fi,j ∀(i, j) ∈ I,

with index set I of pixels to keep. Those can be identified as the white pixels of the
mask image.
Hint: The constrained optimization problem can be reformulated so that it becomes
unconstrained: Rewrite the objective as a least squares problem in terms of the un-
known intensities ui,j, (i, j) /∈ I using sparse linear operators: Find linear operators
X,Y s.t. u can be decomposed as

u = Xũ+ Y f

where ũ contains only the unknown intensities. Optimize for ũ instead of u. You
may use MATALBs mldivide.
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