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Theory: Convex Sets and Functions (1248 Points)

Exercise 1 (4 Points). Let f: R" — RU {400} be proper. Prove the equivalence
of the following statements:

e f is convex.

o epi(f) = {(";) eR™L: f(z) < y} is convex.

Solution. Let f be convex, A € [0,1] and (z1,v1), (22,92) € epi(f). This means
f(x1) <y < 00 and f(xy) < y2 < oo and therefore x1, 29 € dom(f). Due to the
convexity of f we have that:

1. dom(f) convex and therefore Ax; + (1 — A\)zy € dom(f), and
2. fAzr + (1= XNag) < Af(x1) + (1= N) f(x2) < Ay + (1= N)ye.

This means that

Ary + (1 — A):@) <£B1> (x2> .
=A +(1=A €
<)\y1 + (1 - )\)y2 Y1 ( ) Y2 epl(f)
and therefore epi(f) convex. Let conversely epi(f) be convex and x1, xo € dom(f) :=

{r € R": f(x) < co}. By definition of the epigraph set (xy, f(x1)), (z2, f(22)) €
epi(f) and due to the convexity of epi(f)

A (f@ﬁ) +(1=2X) (ié)) € epi(f).

fOx1+ (1= Nz) < Af(z1) + (1 = A) f(22).
It remains to show that dom(f) is convex. We have:
dom(f) ={z e R": f(x) < o0}
={reR":JyeR: f(z) <y}
={z eR":Jy eRs.t. (z,y) €epi(f)}

Since epi(f) is convex it immediatly follows, that dom(f) is convex. Overall this
proves that f convex.

This means



Exercise 2 (4 Points). Let g : R* — RU {400} be convex. Show that the perspec-
tive function f : R" x R — RU {400} of g given as

o) = tg (%) ift> 0‘ and 7 € dom(g)
+00 otherwise,

1S convex.

Solution. Let A € [0,1], and (xy,t1), (z2,t2) € dom(f). That means x;,z5 € R"
and t1,to > 0s.t. &, 22 € dom(g). We have:

t17 to

FOry + (1= Ny, My + (1= Nta) = (M + (1 — Nta) g <)\$1 + (1 — )\)xz)

Aty 4 (1 = N)to
A+ (1= At 2
My + (1= Nty

=M1+ (1=XNta)g (

= (M1 + (1= Mta)

TN A= Nt tn M+ (1= Nia b

::af—ll+(lfa)%2, 0<a<l1

< (Mg + (1= Nty)

)\tl ﬁ + (1 — )\)tg @
it (- N6I\H ) T ra -\ 5
— Mg (ﬂ> + (1= Ntag (@) < +o0
t s

The above computation shows that both f is convex on its domain

dom(f) = {(x,t) eR"™ 1 >0, f € dom(g)}

and dom(f) is a convex set. This implies that f is convex.

Exercise 3 (4 Points). Let ) # X C R™. Prove the equivalence of the following
statements:

e X is closed.
e Every convergent sequence {z,}ney C X attains its limit in X.

Solution. Let X be closed. By definition this means that the complement of X
given as X¢ := R™ \ X is open meaning that for all x € X there exists € > 0 s.t.
the ball B.(z) is entirely contained in X¢:

B(z)NX =10.



Suppose that there exists a convergent sequence X D {z,}nen — = with z ¢ X.
However, by definition of convergence for all € > 0 there exists N € N s.t.

X 3z, € B(x)

for all n > N, which contradicts the assumption. Let conversely X not be closed
(not the same as open). That means there exists © ¢ X s.t. for all € > 0 it holds
that Bc(z)NX # (). This means that for all €, := £ > 0 there exists z,, € B.(z)NX.
By construction we have a sequence {x,, },en converging to z ¢ X but with elements
in X.

Exercise 4 (4 Points). Let X C R" open and convex and let f : X — R be twice
continuously differentiable. Prove the equivalence of the following statements:

e f is convex.

e Forall z € X the Hessian V2 f(z) is positive semidefinite (Vv € R" : v V2 f(z)v >
0).

Hints: You can use that for z,y € X it holds that f is convex iff
(y—2) ' Vf(z) < fly) - f@).

Further recall that there are two variants of the Taylor expansion:

flz4tv) = f(x) +to V() + gvTV2f(x)v + o(t?)

ST oft?) _
with lim; o =5* = 0 and

flx+v) = f(z)+0 Vf(z)+ %UTv2f(I + tv)v

for appropriate t € (0, 1).

Solution. Let f be convex, z € X and v € R”. Since X is open there exists 7 > 0
s.t. for all £ € (0, 7] we have that x + tv € X. Using the Taylor expansion given in
the hint we obtain

Hint

t2
0 < flx+tv)— flz)—tv'Vf(z) = EUTVQf(ZE)U + o(t?)
Multiplying both sides with t% yields

t2
0<v'V*f(z)v+ 2%2).
——

—0

Let conversely V2 f(z) be positive semidefinite for all 2 € X and let x,y € X. Using
the Taylor expansion we have

fly) = fla+(y—a)) = fl@)+(y—2) V(@) +5 (y —2) V(e +t(y —2)(y — )

J/

1
2

TV
>0 by assumption.



and therefore
fly) = f2) > (y — )"V f(),
which means that f is convex.
Exercise 5 (4 Points). Let X C R" open and convex, A € R"*" positive semidef-

inite, b € R, ¢ € R. Show that that the quadratic form f : X — R defined
as

1
f(z) = éxTAx +b'r e,

1S convex.

Solution. To show that f is convex it suffices to show that the Hessian V?f(x) is
positive semidefinite, since f is twice continuously differentiable. We start rewriting
f(x) in terms of finite sums:

flz) = %Z;xizgaijxj + z;arzbz +c
i= ji= i=
= %Z;@Z;aijxj + %zauazf + z;x,b, +c
1= j= i= i=

i
We now proceed computing the first and second order partial derivatives:

of(z) 1 1
O, =3 Zl A Tj + 3 Zl ik Ti + appTy + by

Tk o
1 1
= 5 Zakj:vj + 5 Zaikxi + bk
j=1 i=1

Then we have for the gradient of f:

Viz) = %(A + A2 +b.

The second order derivatives are given as:

Pflz) 1
8xi = §akk + §akk = Gk,

and i) 1 .
T
axkaxl N Eakl + §alk'

The Hessian is then given as

1
2

Since A is positive semidefinite also the Hessian V2 f(x) is positive semidefinite:

Vif(x) (A+A").

1
UT§(A + AN =v"Av > 0.

4



Programming: Inpainting (12 Points)

Exercise 6 (12 Points). Write a MATLAB program that solves the inpainting
problem for the vegetable image:

ugé}};lm (wij — uiz15)” + Uiy — uij—1)? st ouy = fi; V(i j) €1,
irj

with index set I of pixels to keep. Those can be identified as the white pixels of the
mask image.

Hint: The constrained optimization problem can be reformulated so that it becomes
unconstrained: Rewrite the objective as a least squares problem in terms of the un-
known intensities w; ;, (4,7) ¢ I using sparse linear operators: Find linear operators
X,Y s.t. u can be decomposed as

u=Xa+Yf

where % contains only the unknown intensities. Optimize for @ instead of u. You
may use MATALBs mldivide.



