Lecture: Dr. Virginia Estellers
Exercises: Emanuel Laude
Winter Semester 2017/18

Computer Vision Group
Institut für Informatik
Technische Universität München

Weekly Exercises 2

Room: 02.09.023
Friday, 10.11.2017, 09:15-11:00
Submission deadline: Monday, 06.11.2017, 10:15, Room 02.09.023

Theory: Convex Sets and Functions

Exercise 1 (8 Points). Let $n \in \mathbb{N}$. Show that the following two statements are equivalent:

- $f: \mathbb{R}^{n} \rightarrow \mathbb{R} \cup\{\infty\}$ is convex,
- $f\left(\sum_{i=1}^{n} \alpha_{i} x_{i}\right) \leq \sum_{i=1}^{n} \alpha_{i} f\left(x_{i}\right)$, for $x_{i} \in \mathbb{E}, \alpha_{i} \in[0,1], \sum_{i=1}^{n} \alpha_{i}=1, n \geq 1$.

Solution. " \Leftarrow ": For $n=2$ it is precisely the definition of convexity.
$" \Rightarrow$ ": We prove this statement using induction. The cases $n=1$ and $n=2$ are trivial. Now assume the inequality holds for some $n \geq 1$. Without loss of generality we can assume $\alpha_{n+1} \neq 0$, since the case $\alpha_{n+1}=0$ follows directly from the assumption.

$$
\begin{align*}
f\left(\sum_{i=1}^{n+1} \alpha_{i} x_{i}\right) & =f\left(\sum_{i=1}^{n} \alpha_{i} x_{i}+\alpha_{n+1} x_{n+1}\right) \\
& =f\left(\left(1-\alpha_{n+1}\right) \sum_{i=1}^{n} \frac{\alpha_{i}}{1-\alpha_{n+1}} x_{i}+\alpha_{n+1} x_{n+1}\right) \\
& \leq\left(1-\alpha_{n+1}\right) f\left(\sum_{i=1}^{n} \frac{\alpha_{i}}{1-\alpha_{n+1}} x_{i}\right)+\alpha_{n+1} f\left(x_{n+1}\right) \tag{1}\\
& \leq\left(1-\alpha_{n+1}\right) \sum_{i=1}^{n} \frac{\alpha_{i}}{1-\alpha_{n+1}} f\left(x_{i}\right)+\alpha_{n+1} f\left(x_{n+1}\right) \\
& =\sum_{i=1}^{n} \alpha_{i} f\left(x_{i}\right)+\alpha_{n+1} f\left(x_{n+1}\right)=\sum_{i=1}^{n+1} \alpha_{i} f\left(x_{i}\right) .
\end{align*}
$$

Hence it also holds for $n+1$ and by the principle of induction we are finished.
Exercise 2 (8 Points). Compute the subdifferential of the following functions:

- $f: \mathbb{R}^{n} \rightarrow \mathbb{R}, f(x)=\|x\|_{2}$.
- $f: \mathbb{R}^{n} \rightarrow \overline{\mathbb{R}}, f(x)= \begin{cases}0 & \text { if } x \in C \\ \infty & \text { otherwise },\end{cases}$
for a closed convex set $C \subset \mathbb{R}^{n}$.
Solution. - For $x \neq 0 f$ is differentiable and we have $\partial f(x)=\left\{\frac{x}{\|x\|_{2}}\right\}$. For $p \in \mathbb{R}^{n}$ with $\|p\|_{2} \leq 1$ we have $f(y)-f(x)=\|y\|_{2} \geq\|y\|_{2} \cdot\|p\|_{2} \geq\langle y, p\rangle$. Therefore $p \in \partial f(0)$. For $\|p\|_{2}>1$ and $y=p$ we have

$$
f(p)-f(0)=\|p\|_{2}<\|p\|_{2}^{2}=\langle p, p\rangle .
$$

Together this yields

$$
\partial\|x\|_{2}= \begin{cases}\frac{x}{\|x\|_{2}} & \text { if } x \neq 0 \\ B_{1}(0) & \text { if } x=0\end{cases}
$$

- For $f(X):=\|X\|_{2,1}=\sum_{i=1}^{m}\left\|x^{i}\right\|_{2}$ we can again apply the sum rule of the subdifferential. Together with part 2 of the exercise we get

$$
\partial f(X):=\left\{P \in \mathbb{R}^{n \times m}: p^{i} \in \partial\left\|x^{i}\right\|_{2}\right\} .
$$

- Take a point $x \in \operatorname{dom} f$. Then the subgradients $g \in \partial f(x)$ fulfill

$$
\langle g, y-x\rangle \leq 0, \forall y \in C \Leftrightarrow g \in N_{C}(x) .
$$

Hence $\partial f(x)=N_{c}(x)$.
Definition (Convex Hull). The convex hull $\operatorname{conv}(S)$ of a finite set of points $S \subset \mathbb{R}^{n}$ is defined as

$$
\operatorname{conv}(S):=\left\{\sum_{i=1}^{|S|} a_{i} x_{i}: x_{i} \in S, \sum_{i=1}^{|S|} a_{i}=1, a_{i} \geq 0\right\}
$$

Exercise 3 (8 Points). Prove the following statement: Let $n \in \mathbb{N}$ and let $A \subset \mathbb{R}^{n}$ contain $n+2$ elements: $|A|=n+2$. Then there exists a partition of A into two disjoint sets A_{1}, A_{2}

$$
A=A_{1} \dot{\cup} A_{2},
$$

(meaning that $A_{1} \cap A_{2}=\emptyset$) so that the convex hulls of A_{1} and A_{2} intersect:

$$
\operatorname{conv}\left(A_{1}\right) \cap \operatorname{conv}\left(A_{2}\right) \neq \emptyset
$$

You may use the following hint. Don't forget to prove the hint!
Hint: Let $x_{1}, \ldots, x_{n+2} \in \mathbb{R}^{n}$. Then the set $\left\{x_{1}-x_{n+2}, \ldots, x_{n+1}-x_{n+2}\right\}$ is linearly dependent and there exist multipliers a_{1}, \ldots, a_{n+2}, not all of which are zero, so that

$$
\sum_{i=1}^{n+2} a_{i} x_{i}=0, \quad \sum_{i=1}^{n+2} a_{i}=0
$$

The desired partition is formed via all points corresponding with $a_{i} \geq 0$ and all points with $a_{i}<0$.

Solution. Let $A:=\left\{x_{1}, x_{2}, \ldots, x_{n+2}\right\} \subset \mathbb{R}^{n}$. Since $n+1$ vectors in \mathbb{R}^{n} are always linearly dependent there exist scalars a_{1}, \ldots, a_{n+1}, not all of which are zero so that

$$
\sum_{i=1}^{n+1} a_{i}\left(x_{i}-x_{n+2}\right)=\sum_{i=1}^{n+1} a_{i} x_{i}+\underbrace{\left(-\sum_{i=1}^{n+1} a_{i}\right)}_{=: a_{n+2}} x_{n+2}=0
$$

Then, by construction $\sum_{i=1}^{n+2} a_{i}=0$. Define $A_{1}:=\left\{x_{i}: a_{i}>0\right\}$ and $A_{2}:=\left\{x_{j}: a_{j} \leq\right.$ $0\}$. Clearly, $A=A_{1} \cup \dot{\cup} A_{2}$ forms a partition and A_{1}, A_{2} are both nonempty. Suppose A_{2} was empty. Then $a_{i}>0$ for all $1 \leq i \leq n+2$. But $a_{n+2}:=-\sum_{i=1}^{n+1} a_{i}<0$ contradicts this assumption (The same holds for A_{1}). We have that

$$
0=\sum_{\left\{i: a_{i}<0\right\}} a_{i} x_{i}+\sum_{\left\{j: a_{j} \geq 0\right\}} a_{j} x_{j} \Longleftrightarrow \sum_{\left\{i: a_{i}<0\right\}} \underbrace{-a_{i}}_{\geq 0} x_{i}=\sum_{\left\{j: a_{j} \geq 0\right\}} a_{j} x_{j},
$$

and on the other hand

$$
0=\sum_{\left\{:: a_{i}<0\right\}} a_{i}+\sum_{\left\{j: a_{j} \geq 0\right\}} a_{j} \Longleftrightarrow \sum_{\left\{i: a_{i}<0\right\}}-a_{i}=\sum_{\left\{j: a_{j} \geq 0\right\}} a_{j}=: w>0 .
$$

Altogether this yields

$$
\underbrace{\sum_{\left\{i: a_{i}<0\right\}} \frac{-a_{i}}{w} x_{i}}_{\in \operatorname{conv}\left(A_{1}\right)}=\underbrace{\sum_{\left\{j: a_{j} \geq 0\right\}} \frac{a_{j}}{w} x_{j}}_{\in \operatorname{conv}\left(A_{2}\right)},
$$

which completes the proof. The theorem is called Radon's Theorem.
Exercise 4 (8 Bonus points). Prove the following statement using induction over m : Let $K_{1}, \ldots, K_{m} \subset \mathbb{R}^{n}, m \geq n+1$, be convex, such that for all $\mathcal{I} \subset\{1, \ldots, m\}$ with $|\mathcal{I}|=n+1$ it holds that $\bigcap_{i \in \mathcal{I}} K_{i} \neq \emptyset$. Then $\bigcap_{i=1}^{m} K_{i} \neq \emptyset$.

Hint: Use exercise 3 above.
Solution. Base case: for $m=n+1$ the statement clearly holds.
Inductive step: $m \rightarrow m+1$. For any $\mathcal{I} \subset\{1, \ldots, m+1\}$ with $|\mathcal{I}|=n+1$ assume that $\bigcap_{i \in \mathcal{I}} K_{i} \neq \emptyset$. Fix $j \in\{1,2, \ldots, m+1\}$. The assumption implies that for all $\mathcal{I}^{\prime} \subset\{1, \ldots, m+1\} \backslash\{j\}$ with $\left|\mathcal{I}^{\prime}\right|=n+1$ it holds that $\bigcap_{i \in \mathcal{I}^{\prime}} K_{i} \neq \emptyset$. We may now apply the induction hypothesis to the sets K_{1}, \ldots, K_{m+1} excluding K_{j} and the sets \mathcal{I}^{\prime} and conclude that for any $\mathcal{J} \subset\{1, \ldots, m+1\}$ with $\mathcal{J} \neq \emptyset$:

$$
x_{j} \in \bigcap_{i=1, i \neq j}^{m+1} K_{i} \subset \begin{cases}\bigcap_{i \in \mathcal{J}} K_{i} & \text { if } j \notin \mathcal{J} \\ \bigcap_{i \notin \mathcal{J}} K_{i} & \text { if } j \in \mathcal{J}\end{cases}
$$

Now, consider the partitions $A_{1}:=\left\{x_{j}: j \notin \mathcal{J}\right\}, A_{2}:=\left\{x_{j}: j \in \mathcal{J}\right\}$ of the set $A:=\left\{x_{1}, x_{2}, \cdots x_{m+1}\right\}$ determined via \mathcal{J}. Since $m+1 \geq n+2$ we know from exercise 4 of the last sheet that there exists an $\mathcal{J}^{\prime} \subset\{1, \ldots, m+1\}$ (the proof can easily be adapted to the more general case $m+1 \geq n+2)$ so that $\operatorname{conv}\left(A_{1}\right) \cap \operatorname{conv}\left(A_{2}\right) \neq \emptyset$.

Since the K_{i} are convex and the intersection of convex sets is convex we have that $\operatorname{conv}\left(A_{1}\right) \subset \bigcap_{i \in \mathcal{J}^{\prime}} K_{i}$ and $\operatorname{conv}\left(A_{2}\right) \subset \bigcap_{i \notin \mathcal{J}^{\prime}} K_{i}$. Overall we have that

$$
\emptyset \neq \operatorname{conv}\left(A_{1}\right) \cap \operatorname{conv}\left(A_{2}\right) \subset \bigcap_{i \in \mathcal{J}^{\prime}} K_{i} \cap \bigcap_{i \notin \mathcal{J}^{\prime}} K_{i}=\bigcap_{i=1}^{m+1} K_{i} .
$$

The theorem is called Helly's Theorem.

