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Theory: Convex Sets and Functions (24+8 Points)
Exercise 1 (8 Points). Let n ∈ N. Show that the following two statements are
equivalent:

• f : Rn → R ∪ {∞} is convex,

• f (
∑n

i=1 αixi) ≤
∑n

i=1 αif(xi), for xi ∈ E, αi ∈ [0, 1],
∑n

i=1 αi = 1, n ≥ 1.

Solution. “⇐”: For n = 2 it is precisely the definition of convexity.
“⇒”: We prove this statement using induction. The cases n = 1 and n = 2 are trivial.
Now assume the inequality holds for some n ≥ 1. Without loss of generality we can
assume αn+1 6= 0, since the case αn+1 = 0 follows directly from the assumption.

f

(
n+1∑
i=1

αixi

)
= f

(
n∑

i=1

αixi + αn+1xn+1

)

= f

(
(1− αn+1)

n∑
i=1

αi

1− αn+1

xi + αn+1xn+1

)

≤ (1− αn+1)f

(
n∑

i=1

αi

1− αn+1

xi

)
+ αn+1f(xn+1)

≤ (1− αn+1)
n∑

i=1

αi

1− αn+1

f(xi) + αn+1f(xn+1)

=
n∑

i=1

αif(xi) + αn+1f(xn+1) =
n+1∑
i=1

αif(xi).

(1)

Hence it also holds for n+ 1 and by the principle of induction we are finished.

Exercise 2 (8 Points). Compute the subdifferential of the following functions:

• f : Rn → R, f(x) = ‖x‖2.
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• f : Rn → R, f(x) =

{
0 if x ∈ C

∞ otherwise,
for a closed convex set C ⊂ Rn.

Solution. • For x 6= 0 f is differentiable and we have ∂f(x) =
{

x
‖x‖2

}
. For

p ∈ Rn with ‖p‖2 ≤ 1 we have f(y) − f(x) = ‖y‖2 ≥ ‖y‖2 · ‖p‖2 ≥ 〈y, p〉.
Therefore p ∈ ∂f(0). For ‖p‖2 > 1 and y = p we have

f(p)− f(0) = ‖p‖2 < ‖p‖22 = 〈p, p〉.

Together this yields

∂‖x‖2 =

{
x

‖x‖2 if x 6= 0

B1(0) if x = 0.

• For f(X) := ‖X‖2,1 =
∑m

i=1 ‖xi‖2 we can again apply the sum rule of the
subdifferential. Together with part 2 of the exercise we get

∂f(X) := {P ∈ Rn×m : pi ∈ ∂‖xi‖2}.

• Take a point x ∈ dom f . Then the subgradients g ∈ ∂f(x) fulfill

〈g, y − x〉 ≤ 0,∀y ∈ C ⇔ g ∈ NC(x).

Hence ∂f(x) = Nc(x).

Definition (Convex Hull). The convex hull conv(S) of a finite set of points S ⊂ Rn

is defined as

conv(S) :=


|S|∑
i=1

aixi : xi ∈ S,

|S|∑
i=1

ai = 1, ai ≥ 0


Exercise 3 (8 Points). Prove the following statement: Let n ∈ N and let A ⊂ Rn

contain n + 2 elements: |A| = n + 2. Then there exists a partition of A into two
disjoint sets A1, A2

A = A1∪̇A2,

(meaning that A1 ∩ A2 = ∅) so that the convex hulls of A1 and A2 intersect:

conv(A1) ∩ conv(A2) 6= ∅.

You may use the following hint. Don’t forget to prove the hint!
Hint: Let x1, . . . , xn+2 ∈ Rn. Then the set {x1−xn+2, . . . , xn+1−xn+2} is linearly

dependent and there exist multipliers a1, . . . , an+2, not all of which are zero, so that

n+2∑
i=1

aixi = 0,
n+2∑
i=1

ai = 0.

The desired partition is formed via all points corresponding with ai ≥ 0 and all
points with ai < 0.
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Solution. Let A := {x1, x2, . . . , xn+2} ⊂ Rn. Since n + 1 vectors in Rn are always
linearly dependent there exist scalars a1, . . . , an+1, not all of which are zero so that

n+1∑
i=1

ai(xi − xn+2) =
n+1∑
i=1

aixi +

(
−

n+1∑
i=1

ai

)
︸ ︷︷ ︸

=:an+2

xn+2 = 0.

Then, by construction
∑n+2

i=1 ai = 0. Define A1 := {xi : ai > 0} and A2 := {xj : aj ≤
0}. Clearly, A = A1∪̇A2 forms a partition and A1, A2 are both nonempty. Suppose
A2 was empty. Then ai > 0 for all 1 ≤ i ≤ n + 2. But an+2 := −

∑n+1
i=1 ai < 0

contradicts this assumption (The same holds for A1). We have that

0 =
∑

{i:ai<0}

aixi +
∑

{j:aj≥0}

ajxj ⇐⇒
∑

{i:ai<0}

−ai︸︷︷︸
≥0

xi =
∑

{j:aj≥0}

ajxj,

and on the other hand

0 =
∑

{i:ai<0}

ai +
∑

{j:aj≥0}

aj ⇐⇒
∑

{i:ai<0}

−ai =
∑

{j:aj≥0}

aj =: w > 0.

Altogether this yields ∑
{i:ai<0}

−ai
w

xi︸ ︷︷ ︸
∈conv(A1)

=
∑

{j:aj≥0}

aj
w
xj︸ ︷︷ ︸

∈conv(A2)

,

which completes the proof. The theorem is called Radon’s Theorem.

Exercise 4 (8 Bonus points). Prove the following statement using induction over
m: Let K1, . . . , Km ⊂ Rn, m ≥ n + 1, be convex, such that for all I ⊂ {1, . . . ,m}
with |I| = n+ 1 it holds that

⋂
i∈I Ki 6= ∅. Then

⋂m
i=1Ki 6= ∅.

Hint: Use exercise 3 above.

Solution. Base case: for m = n+ 1 the statement clearly holds.
Inductive step: m → m + 1. For any I ⊂ {1, . . . ,m + 1} with |I| = n + 1

assume that
⋂

i∈I Ki 6= ∅. Fix j ∈ {1, 2, . . . ,m + 1}. The assumption implies that
for all I ′ ⊂ {1, . . . ,m + 1} \ {j} with |I ′| = n + 1 it holds that

⋂
i∈I′ Ki 6= ∅. We

may now apply the induction hypothesis to the sets K1, . . . , Km+1 excluding Kj and
the sets I ′ and conclude that for any J ⊂ {1, . . . ,m+ 1} with J 6= ∅:

xj ∈
m+1⋂

i=1,i 6=j

Ki ⊂

{⋂
i∈J Ki if j /∈ J⋂
i/∈J Ki if j ∈ J .

Now, consider the partitions A1 := {xj : j /∈ J }, A2 := {xj : j ∈ J } of the set
A := {x1, x2, · · ·xm+1} determined via J . Since m+1 ≥ n+2 we know from exercise
4 of the last sheet that there exists an J ′ ⊂ {1, . . . ,m+ 1} (the proof can easily be
adapted to the more general case m+ 1 ≥ n+ 2) so that conv(A1) ∩ conv(A2) 6= ∅.
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Since the Ki are convex and the intersection of convex sets is convex we have that
conv(A1) ⊂

⋂
i∈J ′ Ki and conv(A2) ⊂

⋂
i/∈J ′ Ki. Overall we have that

∅ 6= conv(A1) ∩ conv(A2) ⊂
⋂
i∈J ′

Ki ∩
⋂
i/∈J ′

Ki =
m+1⋂
i=1

Ki.

The theorem is called Helly’s Theorem.
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