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Theory: Lipschitz continuity, fixed point iterations
and gradient descent (12+4 Points)

Exercise 1 (4 Points). We call a function E : R" — R absolutely one-homogeneous
if
E(au) = [alE(u)
holds for all v € R" and o € R. Prove that
0E(u) = {p e R" | {p,u) = E(u), E(v) 2 {p,v) Vv € R"}.

Solution. Let u € R™ and let p € OE(u). That means that E(v) — E(u) > (p,v—u)
for all v € R™. Let v = 0. Then E(v) = 0. Therefore

E(u) < (p,u). (1)

Conversely
E(u) = E(2u) — E(u) > (p,u).

This means E(u) = (p,u). Then also E(v) — (p,u) > (p,v — u) and therefore
E(v) > (p,v —u).

Exercise 2 (4 Points). Find examples for the following functions and explain why
your example is correct:

e A continuously differentiable convex function that is not L-smooth.
e A Lipschitz continuous function that is not a contraction.
e A function that is not differentiable, but Lipschitz continuous.

e A convex L-smooth function E and a step size 7 for which G defined by
G(u) = u — 7V E is not a non-expansive function.

Solution. e |2[>2 or 2%

e b1



o |x|.
o B(u)=1/2u* 7 =3, G(u) =2u
Exercise 3 (4 Points). Show that for any a,b € R", § € R it holds that
11 = 6)a + 6b|* = (1 = O)llall” + Ol1b]* — 0(1 — O)la — b]J*
Solution.

11 = O)a + 6b]|* = (1 = 0)*[lall* + (1 — O)a, 0b) + 6%b]*

= (1 =20+ 0%)llall® + (0 — 6°)(a, b) + 6°||b]|*
= 0*lal* + (1 = O)[lall* = Olla]l* — 6%(a, b) + 6{a, b) + 6%1b]|*
= 0*la —blI* + (1 = ) [lal|* — Olla]|* + 6(a, b) — O]|b]|* + O[|b]*
= (0" = 0)lla — b* + (1 = O)|al* + 0 1b]|*
= (1= 0)llal® + 0[p]* = (1 = 0)0]]a — b|J*

Exercise 4 (4 points). Let the function £ : R — R be given as

E(u) = t(u) + h(u).

where the function A : R™ — R is defined as
h(u):=g(Du),  gv)=> ov), @)= Va>+e,

with D € R?"*" being a finite difference gradient operator and ¢ : R® — R is defined
as

A
tu) o= Sl — S
1. Show that the function F is L-smooth with L = X\ + @.
2. Show that the function E is m-strongly convex, with m = A.

Solution. To compute the (smallest) Lipschitz constant of VE we separately com-

pute the (smallest) Lipschitz constants of both Vt(u) and Vh(u): We first show
221

that i is = --smooth and begin computing the gradient of the function h using the
chain rule and the quotient rule for ¢:
Vh(u) = DTVg(Du), Vgv)= (¢ ()", () = ——

Starting with the left-hand side of the definition we have:

IVh(u) — Vh(v)|| = ||DTVg(Du) — D"Vg(Dv)||
<|[DII- [Vg(Du) — Vg(Dv)|

= [IDIl - J Y (@((Du)i) — &' ((Dv))*.

i=1
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We will show that ¢ is %—smooth, so that

DI \| S0 = (000 < 111 | 3 (2w - (D))
DL S () - (Do
=28y — oy
<12 )

This means that h is @—smooth. It remains to show that ¢ is %—smooth. We do

that by giving an upper bound on the absolute value of the second order derivative
" of ¢: Using the quotient rule we obtian:

o o 2242 g2

" _n _1' $2+62_$'%\/x21+e2'2$_ \/—;2? . €2
()] = ¢"(z) = S = vrte = .
e te x°+e (22 + €2)2

Clearly the maximum of ¢” is attained for x = 0 s.t.

w()éé

The data term ¢(u) is A-smooth since the Hessian of

A A
Nl = S~ 11

is 0 which clearly is negative semidefinite. Overall we obtain using the triangle
inequality:

IVE(u) = VE@)|| = [Vt + h)(u) = V( + h)(0)]
= [IVt(u) + Vh(u) = Vi(v) = Vh(v)|
< |IVt(u) = Vi)|[ + [|Vh(u) = VA()|

1D ||2 1DI”
< Allu = ol + = llu = vl = { A+ =) [lu = vl

This concludes the proof of the first part of this exercise.

For the second part we first show that the data term t(u) = 3llu — f[|* is A-
strongly convex since the Hessian of

A A
= I = Sul?

is 0 which clearly is positive semidefinite. Since h(u) is also convex (this follows from
a straight forward computation starting with the definition of a convex function)
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and, according to the lecture, the sum of two convex functions is convex we have
that

Pl — 712 = 2l + ha)

is also convex and therefore the energy E(u) is A-strongly convex.

Programming: Image denoising (12 Points)

Exercise 5 (12 Points). Denoise the noisy input image f, given in the file noisy_input.png
by minimizing the energy from Ex. 3:

2n
B) = 5 Ju— 1P+ 30 \/(Du)z + &
=1

with gradient descent. To guarantee convergence choose your step size 7 so that

O<r<

m-+ L’

Use MATLABs normest to estimate the norm || D|| of your finite difference gradient
operator D. Here, n is the number of pixels times the number of color channels.



