Convex Optimization for Machine Learning and Computer Vision

Lecture: Dr. Virginia Estellers
Exercises: Emanuel Laude
Winter Semester 2017/18

Computer Vision Group
Institut für Informatik
Technische Universität München

Weekly Exercises 3

Room: 02.09.023
Friday, 17.11.2017, 09:15-11:00
Submission deadline: Monday, 13.11.2017, 10:15, Room 02.09.023

Theory: Lipschitz continuity, fixed point iterations and gradient descent
 (12+4 Points)

Exercise 1 (4 Points). We call a function $E: \mathbb{R}^{n} \rightarrow \mathbb{R}$ absolutely one-homogeneous if

$$
E(\alpha u)=|\alpha| E(u)
$$

holds for all $u \in \mathbb{R}^{n}$ and $\alpha \in \mathbb{R}$. Prove that

$$
\partial E(u)=\left\{p \in \mathbb{R}^{n} \mid\langle p, u\rangle=E(u), \quad E(v) \geq\langle p, v\rangle \forall v \in \mathbb{R}^{n}\right\} .
$$

Solution. Let $u \in \mathbb{R}^{n}$ and let $p \in \partial E(u)$. That means that $E(v)-E(u) \geq\langle p, v-u\rangle$ for all $v \in \mathbb{R}^{n}$. Let $v=0$. Then $E(v)=0$. Therefore

$$
\begin{equation*}
E(u) \leq\langle p, u\rangle \tag{1}
\end{equation*}
$$

Conversely

$$
E(u)=E(2 u)-E(u) \geq\langle p, u\rangle .
$$

This means $E(u)=\langle p, u\rangle$. Then also $E(v)-\langle p, u\rangle \geq\langle p, v-u\rangle$ and therefore $E(v) \geq\langle p, v-u\rangle$.

Exercise 2 (4 Points). Find examples for the following functions and explain why your example is correct:

- A continuously differentiable convex function that is not L-smooth.
- A Lipschitz continuous function that is not a contraction.
- A function that is not differentiable, but Lipschitz continuous.
- A convex L-smooth function E and a step size τ for which G defined by $G(u)=u-\tau \nabla E$ is not a non-expansive function.

Solution. - $|x|^{3 / 2}$ or x^{4}.

- $5 x$
- $|x|$.
- $E(u)=1 / 2 u^{2}, \tau=3, G(u)=2 u$

Exercise 3 (4 Points). Show that for any $a, b \in \mathbb{R}^{n}, \theta \in \mathbb{R}$ it holds that

$$
\|(1-\theta) a+\theta b\|^{2}=(1-\theta)\|a\|^{2}+\theta\|b\|^{2}-\theta(1-\theta)\|a-b\|^{2}
$$

Solution.

$$
\begin{aligned}
\|(1-\theta) a+\theta b\|^{2} & =(1-\theta)^{2}\|a\|^{2}+\langle(1-\theta) a, \theta b\rangle+\theta^{2}\|b\|^{2} \\
& =\left(1-2 \theta+\theta^{2}\right)\|a\|^{2}+\left(\theta-\theta^{2}\right)\langle a, b\rangle+\theta^{2}\|b\|^{2} \\
& =\theta^{2}\|a\|^{2}+(1-\theta)\|a\|^{2}-\theta\|a\|^{2}-\theta^{2}\langle a, b\rangle+\theta\langle a, b\rangle+\theta^{2}\|b\|^{2} \\
& =\theta^{2}\|a-b\|^{2}+(1-\theta)\|a\|^{2}-\theta\|a\|^{2}+\theta\langle a, b\rangle-\theta\|b\|^{2}+\theta\|b\|^{2} \\
& =\left(\theta^{2}-\theta\right)\|a-b\|^{2}+(1-\theta)\|a\|^{2}+\theta\|b\|^{2} \\
& =(1-\theta)\|a\|^{2}+\theta\|b\|^{2}-(1-\theta) \theta\|a-b\|^{2}
\end{aligned}
$$

Exercise 4 (4 points). Let the function $E: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be given as

$$
E(u):=t(u)+h(u) .
$$

where the function $h: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is defined as

$$
h(u):=g(D u), \quad g(v)=\sum_{i=1}^{2 n} \varphi\left(v_{i}\right), \quad \varphi(x)=\sqrt{x^{2}+\epsilon^{2}},
$$

with $D \in \mathbb{R}^{2 n \times n}$ being a finite difference gradient operator and $t: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is defined as

$$
t(u):=\frac{\lambda}{2}\|u-f\|^{2} .
$$

1. Show that the function E is L-smooth with $L=\lambda+\frac{\|D\|^{2}}{\epsilon}$.
2. Show that the function E is m-strongly convex, with $m=\lambda$.

Solution. To compute the (smallest) Lipschitz constant of ∇E we separately compute the (smallest) Lipschitz constants of both $\nabla t(u)$ and $\nabla h(u)$: We first show that h is $\frac{\|D\|^{2}}{\epsilon}$-smooth and begin computing the gradient of the function h using the chain rule and the quotient rule for φ :

$$
\nabla h(u)=D^{\top} \nabla g(D u), \quad \nabla g(v)=\left(\varphi^{\prime}\left(v_{i}\right)\right)_{i=1}^{2 n}, \quad \varphi^{\prime}(x)=\frac{x}{\sqrt{x^{2}+\epsilon^{2}}}
$$

Starting with the left-hand side of the definition we have:

$$
\begin{aligned}
\|\nabla h(u)-\nabla h(v)\| & =\left\|D^{\top} \nabla g(D u)-D^{\top} \nabla g(D v)\right\| \\
& \leq\|D\| \cdot\|\nabla g(D u)-\nabla g(D v)\| \\
& =\|D\| \cdot \sqrt{\sum_{i=1}^{2 n}\left(\varphi^{\prime}\left((D u)_{i}\right)-\varphi^{\prime}\left((D v)_{i}\right)\right)^{2}}
\end{aligned}
$$

We will show that φ is $\frac{1}{\epsilon}$-smooth, so that

$$
\begin{aligned}
\|D\| \cdot \sqrt{\sum_{i=1}^{2 n}\left(\varphi^{\prime}\left((D u)_{i}\right)-\varphi^{\prime}\left((D v)_{i}\right)\right)^{2}} & \leq\|D\| \cdot \sqrt{\sum_{i=1}^{2 n}\left(\frac{1}{\epsilon}\left((D u)_{i}-(D v)_{i}\right)\right)^{2}} \\
& =\frac{\|D\|}{\epsilon} \cdot \sqrt{\sum_{i=1}^{2 n}\left((D u)_{i}-(D v)_{i}\right)^{2}} \\
& =\frac{\|D\|}{\epsilon} \cdot\|D u-D v\| \\
& \leq \frac{\|D\|^{2}}{\epsilon} \cdot\|u-v\|
\end{aligned}
$$

This means that h is $\frac{\|D\|^{2}}{\epsilon}$-smooth. It remains to show that φ is $\frac{1}{\epsilon}$-smooth. We do that by giving an upper bound on the absolute value of the second order derivative $\varphi^{\prime \prime}$ of φ : Using the quotient rule we obtian:

$$
\left|\varphi^{\prime \prime}(x)\right|=\varphi^{\prime \prime}(x)=\frac{1 \cdot \sqrt{x^{2}+\epsilon^{2}}-x \cdot \frac{1}{2} \frac{1}{\sqrt{x^{2}+\epsilon^{2}}} \cdot 2 x}{x^{2}+\epsilon^{2}}=\frac{\frac{x^{2}+\epsilon^{2}-x^{2}}{\sqrt{x^{2}+\epsilon^{2}}}}{x^{2}+\epsilon^{2}}=\frac{\epsilon^{2}}{\left(x^{2}+\epsilon^{2}\right)^{\frac{3}{2}}}
$$

Clearly the maximum of $\varphi^{\prime \prime}$ is attained for $x=0$ s.t.

$$
\varphi^{\prime \prime}(x) \leq \frac{1}{\epsilon}
$$

The data term $t(u)$ is λ-smooth since the Hessian of

$$
\frac{\lambda}{2}\|u\|^{2}-\frac{\lambda}{2}\|u-f\|^{2}
$$

is $\mathbf{0}$ which clearly is negative semidefinite. Overall we obtain using the triangle inequality:

$$
\begin{aligned}
\|\nabla E(u)-\nabla E(v)\| & =\|\nabla(t+h)(u)-\nabla(t+h)(v)\| \\
& =\|\nabla t(u)+\nabla h(u)-\nabla t(v)-\nabla h(v)\| \\
& \leq\|\nabla t(u)-\nabla t(v)\|+\|\nabla h(u)-\nabla h(v)\| \\
& \leq \lambda\|u-v\|+\frac{\|D\|^{2}}{\epsilon}\|u-v\|=\left(\lambda+\frac{\|D\|^{2}}{\epsilon}\right)\|u-v\| .
\end{aligned}
$$

This concludes the proof of the first part of this exercise.
For the second part we first show that the data term $t(u)=\frac{\lambda}{2}\|u-f\|^{2}$ is λ strongly convex since the Hessian of

$$
\frac{\lambda}{2}\|u-f\|^{2}-\frac{\lambda}{2}\|u\|^{2}
$$

is $\mathbf{0}$ which clearly is positive semidefinite. Since $h(u)$ is also convex (this follows from a straight forward computation starting with the definition of a convex function)
and, according to the lecture, the sum of two convex functions is convex we have that

$$
\frac{\lambda}{2}\|u-f\|^{2}-\frac{\lambda}{2}\|u\|^{2}+h(u)
$$

is also convex and therefore the energy $E(u)$ is λ-strongly convex.

Programming: Image denoising

(12 Points)

Exercise 5 (12 Points). Denoise the noisy input image f, given in the file noisy_input.png by minimizing the energy from Ex. 3:

$$
E(u)=\frac{\lambda}{2}\|u-f\|^{2}+\sum_{i=1}^{2 n} \sqrt{(D u)_{i}^{2}+\epsilon^{2}}
$$

with gradient descent. To guarantee convergence choose your step size τ so that

$$
0<\tau \leq \frac{2}{m+L}
$$

Use MATLABs normest to estimate the norm $\|D\|$ of your finite difference gradient operator D. Here, n is the number of pixels times the number of color channels.

