## Convex Optimization for Machine Learning and Computer Vision

Lecture: Dr. Virginia Estellers

Computer Vision Group
Exercises: Emanuel Laude

Institut für Informatik
Winter Semester 2017/18

Technische Universität München

## Weekly Exercises 3

Room: 02.09.023 Friday, 17.11.2017, 09:15-11:00

Submission deadline: Monday, 13.11.2017, 10:15, Room 02.09.023

## Theory: Lipschitz continuity, fixed point iterations and gradient descent (12+4 Points)

**Exercise 1** (4 Points). We call a function  $E: \mathbb{R}^n \to \mathbb{R}$  absolutely one-homogeneous if

$$E(\alpha u) = |\alpha|E(u)$$

holds for all  $u \in \mathbb{R}^n$  and  $\alpha \in \mathbb{R}$ . Prove that

$$\partial E(u) = \{ p \in \mathbb{R}^n \mid \langle p, u \rangle = E(u), \quad E(v) \ge \langle p, v \rangle \ \forall v \in \mathbb{R}^n \}.$$

**Solution.** Let  $u \in \mathbb{R}^n$  and let  $p \in \partial E(u)$ . That means that  $E(v) - E(u) \ge \langle p, v - u \rangle$  for all  $v \in \mathbb{R}^n$ . Let v = 0. Then E(v) = 0. Therefore

$$E(u) \le \langle p, u \rangle. \tag{1}$$

Conversely

$$E(u) = E(2u) - E(u) \ge \langle p, u \rangle.$$

This means  $E(u) = \langle p, u \rangle$ . Then also  $E(v) - \langle p, u \rangle \ge \langle p, v - u \rangle$  and therefore  $E(v) \ge \langle p, v - u \rangle$ .

Exercise 2 (4 Points). Find examples for the following functions and explain why your example is correct:

- A continuously differentiable convex function that is not L-smooth.
- A Lipschitz continuous function that is not a contraction.
- A function that is not differentiable, but Lipschitz continuous.
- A convex L-smooth function E and a step size  $\tau$  for which G defined by  $G(u) = u \tau \nabla E$  is not a non-expansive function.

**Solution.** •  $|x|^{3/2}$  or  $x^4$ .

• 5x

- $\bullet$  |x|.
- $E(u) = 1/2u^2$ ,  $\tau = 3$ , G(u) = 2u

**Exercise 3** (4 Points). Show that for any  $a, b \in \mathbb{R}^n$ ,  $\theta \in \mathbb{R}$  it holds that

$$||(1-\theta)a + \theta b||^2 = (1-\theta)||a||^2 + \theta||b||^2 - \theta(1-\theta)||a-b||^2$$

Solution.

$$\begin{aligned} \|(1-\theta)a + \theta b\|^2 &= (1-\theta)^2 \|a\|^2 + \langle (1-\theta)a, \theta b \rangle + \theta^2 \|b\|^2 \\ &= (1-2\theta+\theta^2) \|a\|^2 + (\theta-\theta^2) \langle a, b \rangle + \theta^2 \|b\|^2 \\ &= \theta^2 \|a\|^2 + (1-\theta) \|a\|^2 - \theta \|a\|^2 - \theta^2 \langle a, b \rangle + \theta \langle a, b \rangle + \theta^2 \|b\|^2 \\ &= \theta^2 \|a - b\|^2 + (1-\theta) \|a\|^2 - \theta \|a\|^2 + \theta \langle a, b \rangle - \theta \|b\|^2 + \theta \|b\|^2 \\ &= (\theta^2 - \theta) \|a - b\|^2 + (1-\theta) \|a\|^2 + \theta \|b\|^2 \\ &= (1-\theta) \|a\|^2 + \theta \|b\|^2 - (1-\theta) \theta \|a - b\|^2 \end{aligned}$$

**Exercise 4** (4 points). Let the function  $E: \mathbb{R}^n \to \mathbb{R}$  be given as

$$E(u) := t(u) + h(u).$$

where the function  $h: \mathbb{R}^n \to \mathbb{R}$  is defined as

$$h(u) := g(Du),$$
  $g(v) = \sum_{i=1}^{2n} \varphi(v_i),$   $\varphi(x) = \sqrt{x^2 + \epsilon^2},$ 

with  $D \in \mathbb{R}^{2n \times n}$  being a finite difference gradient operator and  $t : \mathbb{R}^n \to \mathbb{R}$  is defined as

$$t(u) := \frac{\lambda}{2} \|u - f\|^2.$$

- 1. Show that the function E is L-smooth with  $L = \lambda + \frac{\|D\|^2}{\epsilon}$ .
- 2. Show that the function E is m-strongly convex, with  $m = \lambda$ .

**Solution.** To compute the (smallest) Lipschitz constant of  $\nabla E$  we separately compute the (smallest) Lipschitz constants of both  $\nabla t(u)$  and  $\nabla h(u)$ : We first show that h is  $\frac{\|D\|^2}{\epsilon}$ -smooth and begin computing the gradient of the function h using the chain rule and the quotient rule for  $\varphi$ :

$$\nabla h(u) = D^{\top} \nabla g(Du), \quad \nabla g(v) = (\varphi'(v_i))_{i=1}^{2n}, \quad \varphi'(x) = \frac{x}{\sqrt{x^2 + \epsilon^2}}.$$

Starting with the left-hand side of the definition we have:

$$\begin{aligned} \|\nabla h(u) - \nabla h(v)\| &= \|D^{\top} \nabla g(Du) - D^{\top} \nabla g(Dv)\| \\ &\leq \|D\| \cdot \|\nabla g(Du) - \nabla g(Dv)\| \\ &= \|D\| \cdot \sqrt{\sum_{i=1}^{2n} \left(\varphi'((Du)_i) - \varphi'((Dv)_i)\right)^2}. \end{aligned}$$

We will show that  $\varphi$  is  $\frac{1}{\epsilon}$ -smooth, so that

$$||D|| \cdot \sqrt{\sum_{i=1}^{2n} (\varphi'((Du)_i) - \varphi'((Dv)_i))^2} \le ||D|| \cdot \sqrt{\sum_{i=1}^{2n} \left(\frac{1}{\epsilon} ((Du)_i - (Dv)_i)\right)^2}$$

$$= \frac{||D||}{\epsilon} \cdot \sqrt{\sum_{i=1}^{2n} ((Du)_i - (Dv)_i)^2}$$

$$= \frac{||D||}{\epsilon} \cdot ||Du - Dv||$$

$$\le \frac{||D||^2}{\epsilon} \cdot ||u - v||$$

This means that h is  $\frac{\|D\|^2}{\epsilon}$ -smooth. It remains to show that  $\varphi$  is  $\frac{1}{\epsilon}$ -smooth. We do that by giving an upper bound on the absolute value of the second order derivative  $\varphi''$  of  $\varphi$ : Using the quotient rule we obtain:

$$|\varphi''(x)| = \varphi''(x) = \frac{1 \cdot \sqrt{x^2 + \epsilon^2} - x \cdot \frac{1}{2} \frac{1}{\sqrt{x^2 + \epsilon^2}} \cdot 2x}{x^2 + \epsilon^2} = \frac{\frac{x^2 + \epsilon^2 - x^2}{\sqrt{x^2 + \epsilon^2}}}{x^2 + \epsilon^2} = \frac{\epsilon^2}{(x^2 + \epsilon^2)^{\frac{3}{2}}}$$

Clearly the maximum of  $\varphi''$  is attained for x = 0 s.t.

$$\varphi''(x) \le \frac{1}{\epsilon}.$$

The data term t(u) is  $\lambda$ -smooth since the Hessian of

$$\frac{\lambda}{2} \|u\|^2 - \frac{\lambda}{2} \|u - f\|^2$$

is  ${\bf 0}$  which clearly is negative semidefinite. Overall we obtain using the triangle inequality:

$$\begin{split} \|\nabla E(u) - \nabla E(v)\| &= \|\nabla (t+h)(u) - \nabla (t+h)(v)\| \\ &= \|\nabla t(u) + \nabla h(u) - \nabla t(v) - \nabla h(v)\| \\ &\leq \|\nabla t(u) - \nabla t(v)\| + \|\nabla h(u) - \nabla h(v)\| \\ &\leq \lambda \|u - v\| + \frac{\|D\|^2}{\epsilon} \|u - v\| = \left(\lambda + \frac{\|D\|^2}{\epsilon}\right) \|u - v\|. \end{split}$$

This concludes the proof of the first part of this exercise.

For the second part we first show that the data term  $t(u) = \frac{\lambda}{2} ||u - f||^2$  is  $\lambda$ -strongly convex since the Hessian of

$$\frac{\lambda}{2} \|u - f\|^2 - \frac{\lambda}{2} \|u\|^2$$

is  $\mathbf{0}$  which clearly is positive semidefinite. Since h(u) is also convex (this follows from a straight forward computation starting with the definition of a convex function)

and, according to the lecture, the sum of two convex functions is convex we have that

$$\frac{\lambda}{2} \|u - f\|^2 - \frac{\lambda}{2} \|u\|^2 + h(u)$$

is also convex and therefore the energy E(u) is  $\lambda$ -strongly convex.

## Programming: Image denoising

(12 Points)

Exercise 5 (12 Points). Denoise the noisy input image f, given in the file noisy\_input.png by minimizing the energy from Ex. 3:

$$E(u) = \frac{\lambda}{2} \|u - f\|^2 + \sum_{i=1}^{2n} \sqrt{(Du)_i^2 + \epsilon^2}$$

with gradient descent. To guarantee convergence choose your step size  $\tau$  so that

$$0 < \tau \le \frac{2}{m+L}.$$

Use MATLABs normest to estimate the norm ||D|| of your finite difference gradient operator D. Here, n is the number of pixels times the number of color channels.