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Theory: Lipschitz continuity, fixed point iterations
and gradient descent (12+4 Points)
Exercise 1 (4 Points). We call a function E : Rn → R absolutely one-homogeneous
if

E(αu) = |α|E(u)

holds for all u ∈ Rn and α ∈ R. Prove that

∂E(u) = {p ∈ Rn | 〈p, u〉 = E(u), E(v) ≥ 〈p, v〉 ∀v ∈ Rn}.

Solution. Let u ∈ Rn and let p ∈ ∂E(u). That means that E(v)−E(u) ≥ 〈p, v−u〉
for all v ∈ Rn. Let v = 0. Then E(v) = 0. Therefore

E(u) ≤ 〈p, u〉. (1)

Conversely
E(u) = E(2u)− E(u) ≥ 〈p, u〉.

This means E(u) = 〈p, u〉. Then also E(v) − 〈p, u〉 ≥ 〈p, v − u〉 and therefore
E(v) ≥ 〈p, v − u〉.

Exercise 2 (4 Points). Find examples for the following functions and explain why
your example is correct:

• A continuously differentiable convex function that is not L-smooth.

• A Lipschitz continuous function that is not a contraction.

• A function that is not differentiable, but Lipschitz continuous.

• A convex L-smooth function E and a step size τ for which G defined by
G(u) = u− τ∇E is not a non-expansive function.

Solution. • |x|3/2 or x4.

• 5x
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• |x|.

• E(u) = 1/2u2, τ = 3, G(u) = 2u

Exercise 3 (4 Points). Show that for any a, b ∈ Rn, θ ∈ R it holds that

‖(1− θ)a+ θb‖2 = (1− θ)‖a‖2 + θ‖b‖2 − θ(1− θ)‖a− b‖2

Solution.

‖(1− θ)a+ θb‖2 = (1− θ)2‖a‖2 + 〈(1− θ)a, θb〉+ θ2‖b‖2

= (1− 2θ + θ2)‖a‖2 + (θ − θ2)〈a, b〉+ θ2‖b‖2

= θ2‖a‖2 + (1− θ)‖a‖2 − θ‖a‖2 − θ2〈a, b〉+ θ〈a, b〉+ θ2‖b‖2

= θ2‖a− b‖2 + (1− θ)‖a‖2 − θ‖a‖2 + θ〈a, b〉 − θ‖b‖2 + θ‖b‖2

= (θ2 − θ)‖a− b‖2 + (1− θ)‖a‖2 + θ‖b‖2

= (1− θ)‖a‖2 + θ‖b‖2 − (1− θ)θ‖a− b‖2

Exercise 4 (4 points). Let the function E : Rn → R be given as

E(u) := t(u) + h(u).

where the function h : Rn → R is defined as

h(u) := g(Du), g(v) =
2n∑
i=1

ϕ(vi), ϕ(x) =
√
x2 + ε2,

with D ∈ R2n×n being a finite difference gradient operator and t : Rn → R is defined
as

t(u) :=
λ

2
‖u− f‖2.

1. Show that the function E is L-smooth with L = λ+ ‖D‖2
ε

.

2. Show that the function E is m-strongly convex, with m = λ.

Solution. To compute the (smallest) Lipschitz constant of ∇E we separately com-
pute the (smallest) Lipschitz constants of both ∇t(u) and ∇h(u): We first show
that h is ‖D‖2

ε
-smooth and begin computing the gradient of the function h using the

chain rule and the quotient rule for ϕ:

∇h(u) = D>∇g(Du), ∇g(v) = (ϕ′(vi))
2n
i=1 , ϕ′(x) =

x√
x2 + ε2

.

Starting with the left-hand side of the definition we have:

‖∇h(u)−∇h(v)‖ =
∥∥D>∇g(Du)−D>∇g(Dv)

∥∥
≤ ‖D‖ · ‖∇g(Du)−∇g(Dv)‖

= ‖D‖ ·

√√√√ 2n∑
i=1

(ϕ′((Du)i)− ϕ′((Dv)i))
2.
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We will show that ϕ is 1
ε
-smooth, so that

‖D‖ ·

√√√√ 2n∑
i=1

(ϕ′((Du)i)− ϕ′((Dv)i))2 ≤ ‖D‖ ·

√√√√ 2n∑
i=1

(
1

ε
((Du)i − (Dv)i)

)2

=
‖D‖
ε

·

√√√√ 2n∑
i=1

((Du)i − (Dv)i)2

=
‖D‖
ε

· ‖Du−Dv‖

≤ ‖D‖2

ε
· ‖u− v‖

This means that h is ‖D‖2
ε

-smooth. It remains to show that ϕ is 1
ε
-smooth. We do

that by giving an upper bound on the absolute value of the second order derivative
ϕ′′ of ϕ: Using the quotient rule we obtian:

|ϕ′′(x)| = ϕ′′(x) =
1 ·

√
x2 + ε2 − x · 1

2
1√

x2+ε2
· 2x

x2 + ε2
=

x2+ε2−x2
√
x2+ε2

x2 + ε2
=

ε2

(x2 + ε2)
3
2

Clearly the maximum of ϕ′′ is attained for x = 0 s.t.

ϕ′′(x) ≤ 1

ε
.

The data term t(u) is λ-smooth since the Hessian of

λ

2
‖u‖2 − λ

2
‖u− f‖2

is 0 which clearly is negative semidefinite. Overall we obtain using the triangle
inequality:

‖∇E(u)−∇E(v)‖ = ‖∇(t+ h)(u)−∇(t+ h)(v)‖
= ‖∇t(u) +∇h(u)−∇t(v)−∇h(v)‖
≤ ‖∇t(u)−∇t(v)‖+ ‖∇h(u)−∇h(v)‖

≤ λ‖u− v‖+ ‖D‖2

ε
‖u− v‖ =

(
λ+

‖D‖2

ε

)
‖u− v‖.

This concludes the proof of the first part of this exercise.

For the second part we first show that the data term t(u) = λ
2
‖u − f‖2 is λ-

strongly convex since the Hessian of

λ

2
‖u− f‖2 − λ

2
‖u‖2

is 0 which clearly is positive semidefinite. Since h(u) is also convex (this follows from
a straight forward computation starting with the definition of a convex function)
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and, according to the lecture, the sum of two convex functions is convex we have
that

λ

2
‖u− f‖2 − λ

2
‖u‖2 + h(u)

is also convex and therefore the energy E(u) is λ-strongly convex.

Programming: Image denoising (12 Points)
Exercise 5 (12 Points). Denoise the noisy input image f , given in the file noisy_input.png
by minimizing the energy from Ex. 3:

E(u) =
λ

2
‖u− f‖2 +

2n∑
i=1

√
(Du)2i + ε2

with gradient descent. To guarantee convergence choose your step size τ so that

0 < τ ≤ 2

m+ L
.

Use MATLABs normest to estimate the norm ‖D‖ of your finite difference gradient
operator D. Here, n is the number of pixels times the number of color channels.
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