Convex Optimization for Machine Learning and Computer Vision

Lecture: Dr. Virginia Estellers
Exercises: Emanuel Laude
Winter Semester 2017/18

Computer Vision Group
Institut für Informatik
Technische Universität München

Weekly Exercises 5

Room: 02.09.023
Friday, 02.12.2017, 09:15-11:00
Submission deadline theory: Monday, 27.11.2017, 10:15, Room 02.09.023
Submission deadline coding: Monday, 04.12.2017, 10:15, Room 02.09.023

Theory: Fenchel Duality

Exercise 1 (4 Points). Compute the convex conjugates of the following functions:

1. $f_{1}: \mathbb{R}^{n \times m} \rightarrow \mathbb{R} \cup\{\infty\}$ where $f_{1}(X)=\|X\|_{2, \infty}$.
2. $f_{2}: \mathbb{R}^{n \times m} \rightarrow \mathbb{R} \cup\{\infty\}$ where $f_{2}(X)=\delta_{\|\cdot\|_{2,1} \leq 1}(X)$.

Solution. 1. Let $v \in \mathbb{R}^{n},\|v\|_{1} \leq 1$. We have for $u \in \mathbb{R}^{n}$:

$$
\langle u, v\rangle=\sum_{i=1}^{n} u_{i} v_{i} \leq \sum_{i=1}^{n}\left|u_{i}\right| \cdot\left|v_{i}\right| \leq \max _{1 \leq j \leq n}\left|u_{j}\right| \sum_{i=1}^{n}\left|v_{i}\right|=\|u\|_{\infty} \cdot\|v\|_{1} .
$$

This implies that $\langle u, v\rangle-\|u\|_{\infty} \leq 0$. Since $\langle 0, v\rangle-\|0\|_{\infty}=0$ we get

$$
\sup _{u \in \mathbb{R}^{n}}\langle u, v\rangle-\|0\|_{\infty}=0
$$

Now let $\|v\|_{1}>1$. Define $u \in \mathbb{R}^{n}$ with $u_{i}:=\operatorname{sgn}\left(v_{i}\right), 1 \leq i \leq n$, which implies $\|u\|_{\infty}=1$. We get

$$
\langle u, v\rangle=\sum_{i=1}^{n}\left|u_{i}\right|=\|u\|_{1} .
$$

For $\alpha>0$ we get

$$
\langle\lambda u, v\rangle-\|\alpha u\|_{\infty}=\alpha \underbrace{\left(\|u\|_{1}-1\right)}_{>1} .
$$

Therefore

$$
\sup _{u \in \mathbb{R}^{n}}\langle u, v\rangle-\|0\|_{\infty}=\infty .
$$

Altogether we obtain

$$
f_{1}^{*}(v)=\iota_{\|\cdot\|_{1} \leq 1}(v) .
$$

2. We have $f_{2}=f_{1}^{*}$ and since f_{1} is closed, proper and convex we have

$$
f_{2}^{*}=f_{1}^{* *}=f_{1} .
$$

Exercise 2 (8 Points). Let $A \in \mathbb{R}^{m \times n}$ be a linear operator and $f: \mathbb{R}^{n} \rightarrow \mathbb{R} \cup\{\infty\}$ a convex function. Then $A f: \mathbb{R}^{m} \rightarrow \mathbb{R} \cup\{\infty\}$ defined as

$$
(A f)(u):= \begin{cases}\inf _{v \in \mathbb{R}^{n}, A v=u} f(v) & \text { if } \exists v \in \mathbb{R}^{n} \text { s.t. } A v=u \\ \infty & \text { otherwise }\end{cases}
$$

is called the image of f under A.

1. Show that the convex conjugate $(A f)^{*}$ of $A f$ is given as $f^{*} \circ A^{\top}$ where $\left(f^{*} \circ A^{\top}\right)(v):=f^{*}\left(A^{\top} v\right)$.
2. Name the properties that we require for $A^{\top} f^{*}=(f \circ A)^{*}$ to hold. What theorem from the lecture applies here?
3. Give an example of a closed, convex and non-empty set C and a linear operator A s.t. $A C:=\{A x: x \in C\}$ is not closed.
4. Let f be closed, (convex) and proper. Argue that $A f$ does not need to be closed.

Solution. 1. We find

$$
\begin{aligned}
(A f)^{*}(u) & =\sup _{v \in \mathbb{R}^{n}}\langle u, v\rangle-\inf _{w \in \mathbb{R}^{n}, A w=v} f(w) \\
& =\sup _{v \in \mathbb{R}^{n}}\langle u, v\rangle-f(w) \\
& =\sup _{w \in \mathbb{R}^{n}}\langle u, A w=v \\
& =\sup _{w \in \mathbb{R}^{n}}\left\langle A^{\top} u, w\right\rangle-f(w) \\
& =f^{*}\left(A^{\top} u\right)
\end{aligned}
$$

2. If $A^{\top} f^{*}$ is closed, proper and convex it is equal to its biconjugate and using the result from the previous part we find:

$$
A^{\top} f^{*}=\left(A^{\top} f^{*}\right)^{* *}=(f \circ A)^{*}
$$

3. Choose $C:=\left\{x \in \mathbb{R}^{2}: x_{1} \cdot x_{2} \geq 0\right\}$ and $A:=(1,0)$. Then C is obviously closed but $A C=(0, \infty)$ is open.
4. For injective A we find that the epigraph epi $(A f)$ of $A f$ is given as

$$
\begin{aligned}
\operatorname{epi}(A f) & =\left\{(u, \alpha) \in \mathbb{R}^{n+1}: \exists v \in \mathbb{R}^{m}: A v=u,(v, \alpha) \in \operatorname{epi}(f)\right\} \\
& =\{(A v, \alpha):(v, \alpha) \in \operatorname{epi}(f)\}=K \operatorname{epi}(f),
\end{aligned}
$$

for

$$
K:=\left(\begin{array}{cc}
A & 0 \\
0 & 1
\end{array}\right)
$$

Exercise 3 (4 Points). Let $H: \mathbb{R}^{n} \rightarrow \mathbb{R} \cup\{\infty\}$ and $R: \mathbb{R}^{m} \rightarrow \mathbb{R} \cup\{\infty\}$ be proper, closed, convex functions and $K \in \mathbb{R}^{m \times n}$ a linear operator. Let there exist a $u \in \operatorname{ri}(\operatorname{dom}(H))$ such that $K u \in \operatorname{ri}(\operatorname{dom}(R))$. Let $f(u):=H(u)+R(K u)=\tilde{f}(A u)$, where

$$
A:=\binom{I}{K} \in \mathbb{R}^{n+m \times n}, \quad \tilde{f}(u, d):=H(u)+R(d) .
$$

Prove Fenchel's Duality Theorem, i.e. show that

$$
\inf _{u \in \mathbb{R}^{n}} H(u)+R(K u)=\sup _{q \in \mathbb{R}^{m}}-H^{*}\left(-K^{\top} q\right)-R^{*}(q)
$$

Hint: You can assume that the conditions above guarantee that $A^{\top} \tilde{f}^{*}$ is closed proper and convex. Argue that $\tilde{f}^{*}(u, d)=H^{*}(u)+R^{*}(d)$. Which result from the lecture applies here? Begin your computation with

$$
\inf _{u \in \mathbb{R}^{n}} f(u)=-\sup _{u \in \mathbb{R}^{n}}\langle u, 0\rangle-f(u)=-f^{*}(0) \ldots
$$

Solution. Using the result from the lecture for the convex conjugate of a decoupled sum we obtain for \tilde{f}^{*} :

$$
\tilde{f}^{*}(u, d)=H^{*}(u)+R^{*}(d)
$$

Further we have

$$
\begin{aligned}
\inf _{u \in \mathbb{R}^{n}} H(u)+R(K u) & =\inf _{u \in \mathbb{R}^{n}} f(u) \\
& =-\sup _{u \in \mathbb{R}^{n}}\langle u, 0\rangle-f(u) \\
& =-f^{*}(0) \\
& =-(\tilde{f} \circ A)^{*}(0) \\
& =-\left(A^{\top} \tilde{f}^{*}\right)(0) \\
& =-\inf _{(q, p), q+K^{\top} p=0} H^{*}(q)+R^{*}(p) \\
& =-\inf _{p \in \mathbb{R}^{m}} H^{*}\left(-K^{\top} p\right)+R^{*}(p) \\
& =\sup _{p \in \mathbb{R}^{m}}-H^{*}\left(-K^{\top} p\right)-R^{*}(p)
\end{aligned}
$$

Programming: Denoising with Duality (Due on 04.12.2017) (12 Points)

Exercise 4 (12 Points). Denoise the noisy input image f, given in the file noisy_input. png by solving the dual problem of:

$$
\min _{u} \frac{1}{2}\|u-f\|^{2}+\alpha\|D u\|_{2,1}
$$

with projected gradient descent. For details of the derivation of the dual problem cf. the lecture.

