
Convex Optimization for Machine Learning and Computer Vision

Lecture: Dr. Virginia Estellers Computer Vision Group
Exercises: Emanuel Laude Institut für Informatik
Winter Semester 2017/18 Technische Universität München

Weekly Exercises 5
Room: 02.09.023

Friday, 02.12.2017, 09:15-11:00
Submission deadline theory: Monday, 27.11.2017, 10:15, Room 02.09.023
Submission deadline coding: Monday, 04.12.2017, 10:15, Room 02.09.023

Theory: Fenchel Duality (10+6 Points)
Exercise 1 (4 Points). Compute the convex conjugates of the following functions:

1. f1 : Rn×m → R ∪ {∞} where f1(X) = ‖X‖2,∞.

2. f2 : Rn×m → R ∪ {∞} where f2(X) = δ‖·‖2,1≤1(X).

Solution. 1. Let v ∈ Rn, ‖v‖1 ≤ 1. We have for u ∈ Rn:

〈u, v〉 =
n∑

i=1

uivi ≤
n∑

i=1

|ui| · |vi| ≤ max
1≤j≤n

|uj|
n∑

i=1

|vi| = ‖u‖∞ · ‖v‖1.

This implies that 〈u, v〉 − ‖u‖∞ ≤ 0. Since 〈0, v〉 − ‖0‖∞ = 0 we get

sup
u∈Rn

〈u, v〉 − ‖0‖∞ = 0.

Now let ‖v‖1 > 1. Define u ∈ Rn with ui := sgn(vi), 1 ≤ i ≤ n, which implies
‖u‖∞ = 1. We get

〈u, v〉 =
n∑

i=1

|ui| = ‖u‖1.

For α > 0 we get
〈λu, v〉 − ‖αu‖∞ = α (‖u‖1 − 1)︸ ︷︷ ︸

>1

.

Therefore
sup
u∈Rn

〈u, v〉 − ‖0‖∞ =∞.

Altogether we obtain
f ∗1 (v) = ι‖·‖1≤1(v).

2. We have f2 = f ∗1 and since f1 is closed, proper and convex we have

f ∗2 = f ∗∗1 = f1.

1



Exercise 2 (8 Points). Let A ∈ Rm×n be a linear operator and f : Rn → R ∪ {∞}
a convex function. Then Af : Rm → R ∪ {∞} defined as

(Af)(u) :=

{
inf

v∈Rn, Av=u
f(v) if ∃ v ∈ Rn s.t. Av = u

∞ otherwise.

is called the image of f under A.

1. Show that the convex conjugate (Af)∗ of Af is given as f ∗ ◦ A>
where (f ∗ ◦ A>)(v) := f ∗(A>v).

2. Name the properties that we require for A>f ∗ = (f ◦ A)∗ to hold. What
theorem from the lecture applies here?

3. Give an example of a closed, convex and non-empty set C and a linear operator
A s.t. AC := {Ax : x ∈ C} is not closed.

4. Let f be closed, (convex) and proper. Argue that Af does not need to be
closed.

Solution. 1. We find

(Af)∗(u) = sup
v∈Rn

〈u, v〉 − inf
w∈Rn, Aw=v

f(w)

= sup
v∈Rn

w∈Rn, Aw=v

〈u, v〉 − f(w)

= sup
w∈Rn
〈u,Aw〉 − f(w)

= sup
w∈Rn
〈A>u,w〉 − f(w)

= f ∗(A>u)

2. If A>f ∗ is closed, proper and convex it is equal to its biconjugate and using
the result from the previous part we find:

A>f ∗ = (A>f ∗)∗∗ = (f ◦ A)∗.

3. Choose C := {x ∈ R2 : x1 · x2 ≥ 0} and A := (1, 0). Then C is obviously
closed but AC = (0,∞) is open.

4. For injective A we find that the epigraph epi(Af) of Af is given as

epi(Af) = {(u, α) ∈ Rn+1 : ∃ v ∈ Rm : Av = u, (v, α) ∈ epi(f)}
= {(Av, α) : (v, α) ∈ epi(f)} = Kepi(f),

for
K :=

(
A 0
0 1

)
.
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Exercise 3 (4 Points). Let H : Rn → R ∪ {∞} and R : Rm → R ∪ {∞} be
proper, closed, convex functions and K ∈ Rm×n a linear operator. Let there exist a
u ∈ ri(dom(H)) such that Ku ∈ ri(dom(R)). Let f(u) := H(u) + R(Ku) = f̃(Au),
where

A :=

(
I
K

)
∈ Rn+m×n, f̃(u, d) := H(u) +R(d).

Prove Fenchel’s Duality Theorem, i.e. show that

inf
u∈Rn

H(u) +R(Ku) = sup
q∈Rm

−H∗(−K>q)−R∗(q)

Hint: You can assume that the conditions above guarantee that A>f̃ ∗ is closed
proper and convex. Argue that f̃ ∗(u, d) = H∗(u) + R∗(d). Which result from the
lecture applies here? Begin your computation with

inf
u∈Rn

f(u) = − sup
u∈Rn

〈u, 0〉 − f(u) = −f ∗(0) . . .

Solution. Using the result from the lecture for the convex conjugate of a decoupled
sum we obtain for f̃ ∗:

f̃ ∗(u, d) = H∗(u) +R∗(d).

Further we have

inf
u∈Rn

H(u) +R(Ku) = inf
u∈Rn

f(u)

= − sup
u∈Rn

〈u, 0〉 − f(u)

= −f ∗(0)
= −(f̃ ◦ A)∗(0)
= −(A>f̃ ∗)(0)
= − inf

(q,p), q+K>p=0
H∗(q) +R∗(p)

= − inf
p∈Rm

H∗(−K>p) +R∗(p)

= sup
p∈Rm

−H∗(−K>p)−R∗(p)

Programming: Denoising with Duality (Due on 04.12.2017)
(12 Points)
Exercise 4 (12 Points). Denoise the noisy input image f , given in the file noisy_input.png
by solving the dual problem of:

min
u

1

2
‖u− f‖2 + α‖Du‖2,1

with projected gradient descent. For details of the derivation of the dual problem
cf. the lecture.

3


