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Theory: Fenchel Duality (0+16 Points)
Exercise 1 (4 Points). Let X,Y ∈ Rm×n be matrices and let Yi, Xi ∈ Rm denote
the i-th columns of X,Y . Then, the Frobenius scalar product is defined as follows:

〈X,Y 〉F :=
n∑

i=1

〈Xi, Yi〉, (1)

where 〈Xi, Yi〉 is the classical vector scalar product. For notational convenience we
often omit the subscript F in 〈·, ·〉F . Compute the convex conjugates of the following
functions:

1. f1 : Rm×n → R ∪ {∞} where f1(X) = ‖X‖2,∞ := max1≤i≤n ‖Xi‖2.

2. f2 : Rm×n → R ∪ {∞} where

f2(X) := δ‖·‖2,1≤1(X) =

{
0 if ‖X‖2,1 :=

∑n
i=1 ‖Xi‖2 ≤ 1,

∞ otherwise.
(2)

Solution. 1. Let X ∈ Rm×n, ‖X‖2,∞ ≤ 1. We have any for Y ∈ Rm×n:

〈X,Y 〉F =
n∑

i=1

〈Xi, Yi〉

≤
n∑

i=1

|Xi| · |Yi|

≤
n∑

i=1

|Xi| · max
1≤j≤n

|Yj|

= ‖X‖2,1 · ‖Y ‖2,∞.

This implies that

〈X,Y 〉F − ‖Y ‖2,∞ ≤ ‖X‖2,1 · ‖Y ‖2,∞ − ‖Y ‖2,∞ = (‖X‖2,1 − 1) · ‖Y ‖2,∞ ≤ 0
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Since 〈X, 0〉F − ‖0‖2,∞ = 0 we get

f ∗
1 (X) = sup

Y ∈Rm×n

〈X,Y 〉F − ‖Y ‖2,∞ = 0.

Now let ‖X‖2,1 > 1. Define Y ∈ Rm×n so that the i-th column Yi of Y ,
1 ≤ i ≤ n is given as Yi :=

Xi

‖Xi‖2 , which implies ‖Y ‖2,∞ = 1. We get

〈X,Y 〉F =
n∑

i=1

‖Xi‖2 = ‖X‖2,1.

For α > 0 we get

〈X,αY 〉F − ‖αY ‖2,∞ = α (‖X‖2,1 − 1)︸ ︷︷ ︸
>1

.

Therefore,
f ∗
1 (X) = sup

Y ∈Rm×n

〈X,Y 〉F − ‖Y ‖2,∞ = ∞.

Altogether we obtain
f ∗
1 (X) = δ‖·‖2,1≤1(X).

2. We have f2 = f ∗
1 and since f1 is closed, proper and convex we have

f ∗
2 = f ∗∗

1 = f1.

Exercise 2 (8 Points). Let A ∈ Rm×n be a linear operator and f : Rn → R ∪ {∞}
a convex function. Then Af : Rm → R ∪ {∞} defined as

(Af)(u) :=

{
inf

v∈Rn, Av=u
f(v) if ∃ v ∈ Rn s.t. Av = u

∞ otherwise.

is called the image of f under A.

1. Show that the convex conjugate (Af)∗ of Af is given as f ∗ ◦ A>

where (f ∗ ◦ A>)(v) := f ∗(A>v).

2. Name the properties that we require for A>f ∗ = (f ◦ A)∗ to hold. What
theorem from the lecture applies here?

3. Give an example of a closed, convex and non-empty set C and a linear operator
A s.t. AC := {Ax : x ∈ C} is not closed.

4. Let f be closed, (convex) and proper. Argue that Af does not need to be
closed.
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Solution. 1. We find

(Af)∗(u) = sup
v∈Rn

〈u, v〉 − inf
w∈Rn, Aw=v

f(w)

= sup
v∈Rn

w∈Rn, Aw=v

〈u, v〉 − f(w)

= sup
w∈Rn

〈u,Aw〉 − f(w)

= sup
w∈Rn

〈A>u,w〉 − f(w)

= f ∗(A>u)

2. If A>f ∗ is closed, proper and convex it is equal to its biconjugate and using
the result from the previous part we find:

A>f ∗ = (A>f ∗)∗∗ = (f ◦ A)∗.

3. Choose C := epi(exp) ⊆ R2. C is closed, convex and non-empty, since it is
the epigraph of the continuous, convex and proper function f . Let A := (0, 1)
then AC = (0,∞) which is not closed.

4. Let A,C be defined as in the previous part. Define f := δC . Then f is closed,
proper and convex. We have

Af(u) = inf
v∈R2, Av=u

f(v)

= inf
v∈R2, v2=u

δC(v)

=

{
0 if u > 0

∞ otherwise

= δC(0,∞)(u).

We obtain
epi(Af) = (0,∞)× [0,∞),

which is not closed. Therefore Af is not closed.
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Exercise 3 (4 Points). Let H : Rn → R ∪ {∞} and R : Rm → R ∪ {∞} be
proper, closed, convex functions and K ∈ Rm×n a linear operator. Let there exist a
u ∈ ri(dom(H)) such that Ku ∈ ri(dom(R)). Let f(u) := H(u) + R(Ku) = f̃(Au),
where

A :=

(
I
K

)
∈ Rn+m×n, f̃(u, d) := H(u) +R(d).

Prove Fenchel’s Duality Theorem, i.e. show that

inf
u∈Rn

H(u) +R(Ku) = sup
q∈Rm

−H∗(−K>q)−R∗(q)

Hint: You can assume that the conditions above guarantee that A>f̃ ∗ is closed
proper and convex. Argue that f̃ ∗(u, d) = H∗(u) + R∗(d). Which result from the
lecture applies here? Begin your computation with

inf
u∈Rn

f(u) = − sup
u∈Rn

〈u, 0〉 − f(u) = −f ∗(0) . . .

Solution. Using the result from the lecture for the convex conjugate of a decoupled
sum we obtain for f̃ ∗:

f̃ ∗(u, d) = H∗(u) +R∗(d).

Further we have

inf
u∈Rn

H(u) +R(Ku) = inf
u∈Rn

f(u)

= − sup
u∈Rn

〈u, 0〉 − f(u)

= −f ∗(0)

= −(f̃ ◦ A)∗(0)
= −(A>f̃ ∗)(0)

= − inf
(q,p), q+K>p=0

H∗(q) +R∗(p)

= − inf
p∈Rm

H∗(−K>p) +R∗(p)

= sup
p∈Rm

−H∗(−K>p)−R∗(p)

Programming: Denoising with Duality (Due on 04.12.2017)
(12 Points)
Exercise 4 (12 Points). Denoise the noisy input image f , given in the file noisy_input.png
by solving the dual problem of:

min
u

1

2
‖u− f‖2 + α‖Du‖2,1

with projected gradient descent. For details of the derivation of the dual problem
cf. the lecture.

4


