Convex Optimization for Machine Learning and Computer Vision

Lecture: Dr. Virginia Estellers Computer Vision Group

Exercises: Emanuel Laude Institut für Informatik Winter Semester 2017/18 Technische Universität München

Weekly Exercises 5

Room: 02.09.023 Friday, 02.12.2017, 09:15-11:00 Submission deadline theory: Monday, 27.11.2017, 10:15, Room 02.09.023

Submission deadline coding: Monday, 04.12.2017, 10:15, Room 02.09.023

Theory: Fenchel Duality $(0+16 \text{ Points})$

Exercise 1 (4 Points). Let $X, Y \in \mathbb{R}^{m \times n}$ be matrices and let $Y_i, X_i \in \mathbb{R}^m$ denote the i -th columns of X, Y . Then, the Frobenius scalar product is defined as follows:

$$
\langle X, Y \rangle_F := \sum_{i=1}^n \langle X_i, Y_i \rangle, \tag{1}
$$

where $\langle X_i, Y_i \rangle$ is the classical vector scalar product. For notational convenience we often omit the subscript F in $\langle \cdot, \cdot \rangle_F$. Compute the convex conjugates of the following functions:

- 1. $f_1: \mathbb{R}^{m \times n} \to \mathbb{R} \cup {\infty}$ where $f_1(X) = ||X||_{2,\infty} := \max_{1 \leq i \leq n} ||X_i||_2$.
- 2. $f_2 : \mathbb{R}^{m \times n} \to \mathbb{R} \cup {\infty}$ where

$$
f_2(X) := \delta_{\|\cdot\|_{2,1} \le 1}(X) = \begin{cases} 0 & \text{if } \|X\|_{2,1} := \sum_{i=1}^n \|X_i\|_2 \le 1, \\ \infty & \text{otherwise.} \end{cases}
$$
 (2)

Solution. 1. Let $X \in \mathbb{R}^{m \times n}$, $||X||_{2,\infty} \leq 1$. We have any for $Y \in \mathbb{R}^{m \times n}$:

$$
\langle X, Y \rangle_F = \sum_{i=1}^n \langle X_i, Y_i \rangle
$$

\n
$$
\leq \sum_{i=1}^n |X_i| \cdot |Y_i|
$$

\n
$$
\leq \sum_{i=1}^n |X_i| \cdot \max_{1 \leq j \leq n} |Y_j|
$$

\n
$$
= ||X||_{2,1} \cdot ||Y||_{2,\infty}.
$$

This implies that

$$
\langle X, Y \rangle_F - ||Y||_{2,\infty} \le ||X||_{2,1} \cdot ||Y||_{2,\infty} - ||Y||_{2,\infty} = (||X||_{2,1} - 1) \cdot ||Y||_{2,\infty} \le 0
$$

Since $\langle X, 0 \rangle_F - ||0||_{2,\infty} = 0$ we get

$$
f_1^*(X) = \sup_{Y \in \mathbb{R}^{m \times n}} \langle X, Y \rangle_F - \|Y\|_{2, \infty} = 0.
$$

Now let $||X||_{2,1} > 1$. Define $Y \in \mathbb{R}^{m \times n}$ so that the *i*-th column Y_i of Y, $1 \leq i \leq n$ is given as $Y_i := \frac{X_i}{\|X_i\|_2}$, which implies $\|Y\|_{2,\infty} = 1$. We get

$$
\langle X, Y \rangle_F = \sum_{i=1}^n \|X_i\|_2 = \|X\|_{2,1}.
$$

For $\alpha > 0$ we get

$$
\langle X, \alpha Y \rangle_F - ||\alpha Y||_{2,\infty} = \alpha \underbrace{(||X||_{2,1} - 1)}_{>1}.
$$

Therefore,

$$
f_1^*(X) = \sup_{Y \in \mathbb{R}^{m \times n}} \langle X, Y \rangle_F - \|Y\|_{2,\infty} = \infty.
$$

Altogether we obtain

$$
f_1^*(X) = \delta_{\|\cdot\|_{2,1} \le 1}(X).
$$

2. We have $f_2 = f_1^*$ and since f_1 is closed, proper and convex we have

$$
f_2^* = f_1^{**} = f_1.
$$

Exercise 2 (8 Points). Let $A \in \mathbb{R}^{m \times n}$ be a linear operator and $f : \mathbb{R}^n \to \mathbb{R} \cup \{\infty\}$ a convex function. Then $Af : \mathbb{R}^m \to \mathbb{R} \cup {\infty}$ defined as

$$
(Af)(u) := \begin{cases} \inf_{v \in \mathbb{R}^n, Av = u} f(v) & \text{if } \exists v \in \mathbb{R}^n \text{ s.t. } Av = u \\ \infty & \text{otherwise.} \end{cases}
$$

is called the image of f under A.

- 1. Show that the convex conjugate $(Af)^*$ of Af is given as $f^* \circ A^\top$ where $(f^* \circ A^{\top})(v) := f^*(A^{\top}v)$.
- 2. Name the properties that we require for $A^{\dagger} f^* = (f \circ A)^*$ to hold. What theorem from the lecture applies here?
- 3. Give an example of a closed, convex and non-empty set C and a linear operator A s.t. $AC := \{Ax : x \in C\}$ is not closed.
- 4. Let f be closed, (convex) and proper. Argue that Af does not need to be closed.

Solution. 1. We find

$$
(Af)^*(u) = \sup_{v \in \mathbb{R}^n} \langle u, v \rangle - \inf_{w \in \mathbb{R}^n, A w = v} f(w)
$$

=
$$
\sup_{\substack{v \in \mathbb{R}^n \\ w \in \mathbb{R}^n, A w = v}} \langle u, v \rangle - f(w)
$$

=
$$
\sup_{w \in \mathbb{R}^n} \langle u, A w \rangle - f(w)
$$

=
$$
\sup_{w \in \mathbb{R}^n} \langle A^\top u, w \rangle - f(w)
$$

=
$$
f^*(A^\top u)
$$

2. If $A^{\top} f^*$ is closed, proper and convex it is equal to its biconjugate and using the result from the previous part we find:

$$
A^{\top} f^* = (A^{\top} f^*)^{**} = (f \circ A)^*.
$$

- 3. Choose $C := \text{epi}(\exp) \subseteq \mathbb{R}^2$. C is closed, convex and non-empty, since it is the epigraph of the continuous, convex and proper function f. Let $A := (0, 1)$ then $AC = (0, \infty)$ which is not closed.
- 4. Let A, C be defined as in the previous part. Define $f := \delta_C$. Then f is closed, proper and convex. We have

$$
Af(u) = \inf_{v \in \mathbb{R}^2, Av=u} f(v)
$$

=
$$
\inf_{v \in \mathbb{R}^2, v_2=u} \delta_C(v)
$$

=
$$
\begin{cases} 0 & \text{if } u > 0 \\ \infty & \text{otherwise} \end{cases}
$$

=
$$
\delta_C(0, \infty)(u).
$$

We obtain

$$
epi(Af) = (0, \infty) \times [0, \infty),
$$

which is not closed. Therefore Af is not closed.

Exercise 3 (4 Points). Let $H : \mathbb{R}^n \to \mathbb{R} \cup {\infty}$ and $R : \mathbb{R}^m \to \mathbb{R} \cup {\infty}$ be proper, closed, convex functions and $K \in \mathbb{R}^{m \times n}$ a linear operator. Let there exist a $u \in \text{ri}(\text{dom}(H))$ such that $Ku \in \text{ri}(\text{dom}(R))$. Let $f(u) := H(u) + R(Ku) = \tilde{f}(Au)$, where

$$
A := \begin{pmatrix} I \\ K \end{pmatrix} \in \mathbb{R}^{n+m \times n}, \quad \tilde{f}(u, d) := H(u) + R(d).
$$

Prove Fenchel's Duality Theorem, i.e. show that

$$
\inf_{u \in \mathbb{R}^n} H(u) + R(Ku) = \sup_{q \in \mathbb{R}^m} -H^*(-K^{\top}q) - R^*(q)
$$

Hint: You can assume that the conditions above guarantee that $A^{\dagger} \tilde{f}^*$ is closed proper and convex. Argue that $\tilde{f}^*(u, d) = H^*(u) + R^*(d)$. Which result from the lecture applies here? Begin your computation with

$$
\inf_{u \in \mathbb{R}^n} f(u) = -\sup_{u \in \mathbb{R}^n} \langle u, 0 \rangle - f(u) = -f^*(0) \dots
$$

Solution. Using the result from the lecture for the convex conjugate of a decoupled sum we obtain for \tilde{f}^* :

$$
\tilde{f}^*(u, d) = H^*(u) + R^*(d).
$$

Further we have

$$
\inf_{u \in \mathbb{R}^n} H(u) + R(Ku) = \inf_{u \in \mathbb{R}^n} f(u)
$$
\n
$$
= -\sup_{u \in \mathbb{R}^n} \langle u, 0 \rangle - f(u)
$$
\n
$$
= -f^*(0)
$$
\n
$$
= -(f \circ A)^*(0)
$$
\n
$$
= -(A^{\top} f^*)(0)
$$
\n
$$
= -\inf_{(q,p), q + K^{\top} p = 0} H^*(q) + R^*(p)
$$
\n
$$
= -\inf_{p \in \mathbb{R}^m} H^*(-K^{\top} p) + R^*(p)
$$
\n
$$
= \sup_{p \in \mathbb{R}^m} -H^*(-K^{\top} p) - R^*(p)
$$

Programming: Denoising with Duality (Due on 04.12.2017) (12 Points)

Exercise 4 (12 Points). Denoise the noisy input image f , given in the file noisy_input.png by solving the dual problem of:

$$
\min_{u} \frac{1}{2} ||u - f||^{2} + \alpha ||Du||_{2,1}
$$

with projected gradient descent. For details of the derivation of the dual problem cf. the lecture.