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Theory: Consensus Primal-Dual for Sparse SVMs
(16 Points)
Exercise 1 (16 Points). In this exercise you are asked to derive the explicit con-
sensus Primal-Dual (PDHG) for sparse binary SVM training. To this end let
I = {1, . . . , N} denote a set of training samples that are represented by their fea-
ture vectors xi ∈ Rd, for i ∈ I. Each training sample i is associated with a binary
class label yi ∈ {−1, 1}. The aim is to estimate a linear classifier parameterized by
w∗ ∈ Rd, b∗ ∈ R so that yi = sign x>

i w
∗ + b∗ for most training samples i. Like in the

logistic regression task from the previous exercise sheet we assume that the feature
vectors are degraded by components containing just noise. In order to jointly train
the classifier and select the features we attempt to optimize the model

min
w∈Rd,b∈R

N∑
i=1

`(w, b;xi, yi) + λ‖w‖1, (1)

where `(·, ·;xi, yi) is the hinge loss defined according to

`(w, b;xi, yi) := max{0, 1− (〈xi, w〉+ b)yi}. (2)

For consensus primal-dual we consider an equivalent “lifted” formulation of the above
problem: We introduce for each training sample i a “copy” of the classifier variable
wi = w, bi = b and consider the linearly constrained problem

min
w∈Rd,b∈R
{wi},{bi}

N∑
i=1

`(wi, bi;xi, yi) + λ‖w‖1

subject to wi = w

bi = b,∀i.

(3)

You are asked to do the following:
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1. Bring the consensus model (3) into the standard form

min
x

F (Ax) +G(x). (4)

Identify the operator A, the functions F and G. What is the optimization
variable x? What is its dimension?

Hint : A is a tall matrix of stacked identities.

2. Derive the equivalent Fenchel-Legendre saddle point formulation. Explicitly
derive the convex-conjugate F ∗ of the function F .

Hint : exploit that F “separates” over the training examples, i.e. F is of the
form F (y) :=

∑
i fi(yi), what is the dimension of the variable y? Note that

dim(y) � dim(x).

3. Explicitly derive closed form prox-operators of the functions F ∗ and G.

4. Explicitly state the PDHG update scheme for sparse SVM optimization.

5. Argue, why this formulation is well suited to distributed (parallel) optimization
in large scale machine learning. What are the shortcomings of this formula-
tion? How can the performance potentially be improved?

Hint : Suggested Reader: Boyd et al., Distributed Optimization and Statistical
Learning via the Alternating Direction Method of Multipliers, Chapters 7.1,
7.2.
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