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Theory: Consensus Primal-Dual for Sparse SVMs
(16 Points)
Exercise 1 (16 Points). In this exercise you are asked to derive the explicit con-
sensus Primal-Dual (PDHG) for sparse binary SVM training. To this end let
I = {1, . . . , N} denote a set of training samples that are represented by their fea-
ture vectors xi ∈ Rd, for i ∈ I. Each training sample i is associated with a binary
class label yi ∈ {−1, 1}. The aim is to estimate a linear classifier parameterized by
w∗ ∈ Rd, b∗ ∈ R so that yi = sign x>

i w
∗ + b∗ for most training samples i. Like in the

logistic regression task from the previous exercise sheet we assume that the feature
vectors are degraded by components containing just noise. In order to jointly train
the classifier and select the features we attempt to optimize the model

min
w∈Rd,b∈R

N∑
i=1

`(w, b;xi, yi) + λ‖w‖1, (1)

where `(·, ·;xi, yi) is the hinge loss defined according to

`(w, b;xi, yi) := max{0, 1− (〈xi, w〉+ b)yi}. (2)

For consensus primal-dual we consider an equivalent “lifted” formulation of the above
problem: We introduce for each training sample i a “copy” of the classifier variable
wi = w, bi = b and consider the linearly constrained problem

min
w∈Rd,b∈R
{wi},{bi}

N∑
i=1

`(wi, bi;xi, yi) + λ‖w‖1

subject to wi = w

bi = b,∀i.

(3)

You are asked to do the following:
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1. Bring the consensus model (3) into the standard form

min
x

F (Ax) +G(x). (4)

Identify the operator A, the functions F and G. What is the optimization
variable x? What is its dimension?

Hint : A is a tall matrix of stacked identities.

2. Derive the equivalent Fenchel-Legendre saddle point formulation. Explicitly
derive the convex-conjugate F ∗ of the function F .

Hint : exploit that F “separates” over the training examples, i.e. F is of the
form F (z) :=

∑
i fi(zi), what is the dimension of the variable z? Note that

dim(z) � dim(x).

3. Explicitly derive closed form prox-operators of the functions F ∗ and G.

4. Explicitly state the PDHG update scheme for sparse SVM optimization.

5. Argue, why this formulation is well suited to distributed (parallel) optimization
in large scale machine learning. What are the shortcomings of this formula-
tion? How can the performance potentially be improved?

Hint : Suggested Reader: Boyd et al., Distributed Optimization and Statistical
Learning via the Alternating Direction Method of Multipliers, Chapters 7.1,
7.2.

Solution. 1. According to the hint, we define the operator K ∈ RN(d+1)×d+1 as

K :=


I
I
...
I

 , (5)

where I ∈ Rd+1×d+1 is the identity matrix. Define the optimization variable
x ∈ Rd+1 as x := (w, b). Then introducing a variable

z :=



w1

b1
w2

b2
...

wN

bN


∈ RN(d+1),

we can compactly write the constraints wi = w and bi = b, for all 1 ≤ i ≤ N
as

Kx = z. (6)
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We identify the function F : RN(d+1) → R as

F (z) =
N∑
i=1

`(wi, bi;xi, yi), (7)

and the function G : Rd+1 → R as

G(x) = λ‖w‖1. (8)

Then, the problem (3) can be compactly written as

min
x,z

F (z) +G(x)

subject to Kx = z,
(9)

which is equivalent to the standard form (4).

2. According to the lecture, the equivalent saddle point formulation is given as

min
x∈Rd+1

max
p∈RN(d+1)

〈Kx, p〉 − F ∗(p) +G(x). (10)

We proceed computing the convex conjugate F ∗ of F . Since F is separable,
the convex conjugate is given as the sum of the conjugates, as

F ∗(p) :=
N∑
i=1

F ∗
i (pi), (11)

where Fi(zi) := max{0, 1− (〈xi, wi〉+ bi)yi} and zi := (wi, bi) is a subvector of
z. Analogously, the dual variable (Lagrange multiplier) pi ∈ Rd+1 denotes a
sub-vector of p. Both, pi resp. zi contain the entries with indices (d+ 1)i+ 1 ≤
j ≤ (d+ 1)(i+ 1) of the vectors p ∈ RN(d+1) resp. z ∈ RN(d+1).

In order to compute the convex conjugate F ∗
i we define the vector ai :=

(xi, 1)yi ∈ Rd+1 as the product of feature vector xi ∈ Rd and training la-
bel yi ∈ {−1, 1}. Then Fi(wi, bi) can be written as a composition of a linear
function a>i and a scalar nonlinear function f : R → R as

Fi(zi) = max{0, 1− 〈ai, zi〉} = f ◦ a>i , (12)

for f(t) = max{0, 1− t}.
According to the previous exercise sheet, the conjugate of Fi is given via the
so called image function, or preimage of f ∗ w.r.t. ai, as

F ∗
i (pi) := (aif

∗)(pi) :=

 inf
s∈R

ais=pi

f ∗(s) if ∃ s ∈ R : ais = pi

∞ otherwise.
(13)
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It remains to compute the convex conjugate f ∗(s) := supt∈R ts− f(t) of f(t).
We introduce a substitution t′ = 1− t and obtain:

f ∗(s) := sup
t∈R

ts−max{0, 1− t}

= sup
t′∈R

(1− t′)s−max{0, t′}

= sup
t′∈R

− t′s−max{0, t′}+ s

= s+

{
0 if s ∈ [−1, 0]

∞ otherwise,

=: δ[−1,0](s) + s.

Overall, the conjugate F ∗
i (pi) is given as

F ∗
i (pi) =

 inf
s∈R

ais=pi

δ[−1,0](s) + s if ∃ s ∈ R : ais = pi

∞ otherwise,

=

{
s if ∃ s ∈ [−1, 0] : ais = pi

∞ otherwise.

This completes the task.

3. We proceed computing the proximal mapping of F ∗. Again, since F ∗ is sepa-
rable we can compute the proximal mapping of each summand F ∗

i separately.

proxσF ∗
i
(qi) := argmin

pi∈Rd+1

1

2σ
‖pi − qi‖2 + F ∗

i (pi)

= argmin
s∈[−1,0],pi∈Rd+1,

s.t. pi = ais

1

2σ
‖pi − qi‖2 + s.

We equivalently solve for s only, since pi is uniquely determined via pi := ais
and

s∗ := argmin
s∈[−1,0]

1

2σ
‖ais− qi‖2 + s, (14)

which is a simple 1d quadratic program. s∗ can be obtained by computing the
minimum of the 1d-parabola, and clipping the result to the interval [−1, 0].

Then the solution to the proximal mapping can be recovered as

proxσF ∗
i
(qi) = ais

∗. (15)

Another, possibility to compute the proximal mapping of F ∗ is to use Moreau’s
indentity, and compute the proximal mapping of F instead.

The proximal mapping of G has been derived on a past exercise sheet.
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4. Cf. the lecture notes.

5. Since, the proximal mappings can be computed for each training example
independently, it is amenable to highly parallel computing architectures such
as GPUs. Moreover, not each of the many variables wi, bi needs be updated in
each iteration. Moreover, they can be updated asynchronously and randomly.
This allows for very efficient implementations.

Suggested Reader : Stochastic Primal-Dual Hybrid Gradient Algorithm with
Arbitrary Sampling and Imaging Applications, Chambollle et al., 2017.
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