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Coding: Consensus Primal-Dual for Sparse SVMs
(24 Points)
Exercise 1 (24 Points). In this exercise sheet you are asked to implement the
consensus Primal-Dual (PDHG) for sparse binary SVM training, that you have
derived last week. The problem is phrased as an optimization problem of the form:

min
w∈Rd,b∈R

N∑
i=1

`(w, b;xi, yi) + λ‖w‖1, (1)

where `(·, ·;xi, yi) is the hinge loss defined according to

`(w, b;xi, yi) := max{0, 1− (〈xi, w〉+ b)yi}. (2)

More precisely, you are asked to do the following:

1. Implement a MATLAB function, that takes as an input argument the feature
matrix X ∈ RN×d and a vector y ∈ {−1, 1}N of binary class labels and returns
the classifier (w, b) ∈ Rd+1. Here, N is the number of training examples and d
is the feature dimension.

2. Compute a “relaxed” primal-dual gap during iterations. More precisely trace

PD(u t , pt) = F (Kut) +G(ut) + F ∗(pt) +G∗(−K>pt). (3)

In case G∗ takes the form of an indicator function of a linear constraint, we need
to prevent PD to attain the value infinity: We relax the indicator function, to a
quadratic function, penalizing the violation of the constraint quadratically. For
instance, a constraint of the form Ax ≤ b is transformed to

∑
i(max{0, Aix−

bi})2.

3. Use the code template from the logistic regression task and classify the toy
data. Since the SVM-model is suited for two classes only, you are asked to
train for each class an individual classifier in a one-vs-rest fashion. More
precisely, you have to call the function c times for each class 1 ≤ i ≤ c, where
all examples belonging to class i are labeled as 1 and the rest is labeled as −1.
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4. Stack the individual classifiers into a classifier matrix W ∈ Rd×c, B ∈ Rc and
use the logistic regression code template to visualize the classifier.

Solution. For the primal-dual-gap it remains to compute the conjugate G∗ of the
function G. We rewrite G using the constant zero function 0 with 0(u) = 0 as

G(w, b) = λ‖w‖1 + 0(b). (4)

A straight forward computation shows that

G∗(v, t) = δ{‖v‖∞ ≤ λ}+ δ{t = 0} :=

{
0 if ‖v‖∞ ≤ λ and t = 0

∞ otherwise.
(5)

We relax G∗ to

d∑
i=1

(max{0, |vi| − λ})2 + t2. (6)

According to the last exercise sheet, F ∗ is given as

F ∗(p) :=
N∑
i=1

F ∗
i (pi), (7)

F ∗
i (pi) =

{
si if ∃ si ∈ [−1, 0] : aisi = pi

∞ otherwise.

Since we update pti via the proximal mapping of F ∗
i the constraint above will be

satisfied, with sti = aip
t
i, computed internally in the prox. Therefore, we don’t need

to relax the constraint and instead only add
∑N

i=1 s
t
i to the overall primal-dual gap

PD .
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