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Whether this lecture fits you?

Prerequisites

• Background in Mathematical Analysis and Linear Algebra.

• Implementation in Matlab or Python.

• Interest in mathematical theory.

Nice plus (but not necessary)

• Experience in Machine Learning and Computer Vision

e.g., CV I & II, ML for CV, Probab. Graphical Models in CV.

• Knowledge and experience in Continuous Optimization

e.g., Nonlinear Optimization.

• Knowledge in Functional Analysis
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Course overview

Lectures

1 Essential theory from convex analysis.

2 Design and analysis of optimization algorithms.

3 Implementation of algorithms on concrete applications.

4 Extended topic (tentative): Stochastic optimization.
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Exercise session

Organizers: Yuesong Shen and Zhenzhang Ye

• Exercise sheets covering the content of the lecture will be
passed out every Wednesday.

• Exercises contain theoretical as well as programming
questions.

• Should submitted solutions be obviously copied, both
groups would get 0 points.

• You may work on the exercises in groups of two.
• You are encouraged to present your solution on board at

exercise class.
• To get a 0.3 grade bonus, you need to complete 75% of

the total exercise points.
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Contact us

Miscellaneous info

• Tao’s office: 02.09.061

• Yuesong’s office: 02.09.039

• Zhenzhang’s office: 02.09.060

• Office hours: Please write an email.

• Lecture: Starts at quarter past; Short break in between.

• Course website (where you check out announcements):
https://vision.in.tum.de/teaching/ws2018/cvx4cv

• Submit your programming exercises per email to:
comlcv-ws2018@vision.in.tum.de

• Passcode for accessing course materials:
primal-dual

https://vision.in.tum.de/teaching/ws2018/cvx4cv
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Variational Methods in Computer Vision



Organization and
Overview

Tao Wu
Yuesong Shen
Zhenzhang Ye

Organization

A First Glimpse

Last updated: 22.10.2018

Photometric stereo for 3D recontruction

4 Yvain Quéau et al.

Keeping this in mind, we have developed a pho-
tometric stereo-based setup for 3D-reconstruction of
faces, which includes m = 8 LEDs2 located at about
30 cm of the scene (see Fig. 2-a). The face is pho-
tographed by a Canon EOS 7D camera with focal length
f = 35 mm. Triggering the shutter in burst mode, while
synchronically lighting the LEDs, provides us with m =

8 images such as those of Figs. 2-b, 2-c and 2-d. In this
section, we model the luminous flux emitted by a LED,
and show how to estimate the parameters involved. We
finally show how to model photometric stereo under
point light source illumination.

(a)

(b) (c) (d)

Fig. 2 (a) Our photometric stereo-based experimental setup
for 3D-reconstruction of faces using a Canon EOS 7D camera
(highlighted in red) and m = 8 LEDs (highlighted in blue).
The walls are painted in black in order to avoid the reflections
between the scene and the environment. (b-c-d) Three out of
the m = 8 images obtained by this setup.

2.1 Modeling the Luminous Flux Emitted by a LED

For the LEDs we use, the characteristic illuminating
volume is of the order of one cubic millimeter. There-
fore, in comparison with the scale of a face, each LED
can be seen as a point source located at a point xs 2 R3.
At any point x 2 R3, the lighting vector s(x) is nec-
essarily radial i.e., collinear with the unit-length vector

2 We use white LUXEON Rebel LEDs: http://www.
luxeonstar.com/luxeon-rebel-leds.

ur = x�xs

kx�xsk . Using spherical coordinates (r, ✓,�) of x
in a frame having xs as origin, it is written

s(x) = ��(✓,�)

r2
ur, (2.1)

where �(✓,�) > 0 denotes the intensity of the source3,
and the 1/r2 attenuation is a consequence of the conser-
vation of luminous energy in a non-absorbing medium.
Vector s(x) is purposely oriented in the opposite di-
rection from that of the light, in order to simplify the
writing of the Lambertian model.

Model (2.1) is very general. We could project the in-
tensity �(✓,�) on the spherical harmonics basis, which
allowed Basri et al. to model the luminous flux in the
case of uncalibrated photometric stereo [6]. We could
also sample �(✓,�) in the vicinity of a plane, using a
plane with known reflectance [3,39,61].

Using the specific characteristics of LEDs may lead
to a more accurate model. Indeed, most of the LEDs
emit a luminuous flux which is invariant by rotation
around a principal direction indicated by a unit-length
vector ns [45]. If ✓ is defined relatively to ns, this means
that �(✓,�) is independent from �. The lighting vector
in x induced by a LED located in xs is thus written

s(x) =
�(✓)

kxs � xk2

xs � x

kxs � xk . (2.2)

The dependency on ✓ of the intensity � character-
izes the anisotropy of the LED. The function �(✓) is
generally decreasing over [0,⇡/2] (cf. Fig. 3).

(a) (b)

Fig. 3 Intensity patterns of the LEDs used (source: http:
//www.lumileds.com/uploads/28/DS64-pdf). (a) Anisotropy
function �(✓)/�0 as a function of ✓. (b) Polar representation.
These diagrams show us that ✓1/2 = ⇡/3, which corresponds
to µ = 1 according to Eq. (2.4) (Lambertian source).

An anisotropy model satisfying this constraint is
that of “imperfect Lambertian source”:

�(✓) = �0 cosµ ✓, (2.3)

which contains two parameters �0 = �(0) and µ > 0,
and models both isotropic sources (µ = 0) and Lamber-
tian sources (µ = 1). Model (2.3) is empirical, and more

3 The intensity is expressed in lumen per steradian
(lm.sr�1), or candela (cd).

LED photometric stereo [Quéau et al ’18]

Minimize photometric error via shading model:

min
ρ,d∈RΩ

n∑
i=1

∑
j∈Ω

ψ

(
ρj

{
lij (d) · nj (d)

}
+
− I i

j

)
.
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Visual odometry

0162-8828 (c) 2016 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2017.2658577, IEEE
Transactions on Pattern Analysis and Machine Intelligence
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Fig. 11. TUM mono-VO Dataset. A single image from each of the 50 TUM mono-VO dataset sequences (s 01 to s 50) used for evaluation and
parameter studies, overlayed with the predicted depth map from DSO. The full dataset contains over 105 minutes of video (190’000 frames). Note
the wide range of environments covered, ranging from narrow indoor corridores to wide outdoor areas, including forests.

on the TUM-monoVO dataset, as well as the synthetic ICL NUIM
dataset. On the EuRoC MAV dataset, ORB-SLAM achieves a
better accuracy (but lower robustness). This is due to two major
reasons: (1) there is no photometric calibration available, and
(2) the sequences contain many small loops or segments where
the quadrocopter “back-tracks” the way it came, allowing ORB-
SLAM’s local mapping component to implicitly close many small
and some large loops, whereas our visual odometry formulation
permanently marginalizes all points and frames that leave the field
of view. We can validate this by prohibiting ORB-SLAM from
matching against any keypoints that have not been observed for
more than tmax = 10s (lines with circle markers in Figure 10):
In this case, ORB-SLAM performs similar to DSO in terms of
accuracy, but is less robust. The slight difference in robustness for
DSO comes from the fact that for real-time execution, tracking
new frames and keyframe-creation are parallelized, thus new
frames are tracked on the second-latest keyframe, instead of the
latest. In some rare cases – in particular during strong exposure
changes – this causes initial image alignment to fail.

To show the flexibility of DSO, we include results when
running at 5 times the speed they were recorded at4, with reduced
settings (Np=800 points, Nf =6 active frames, 424⇥320 image
resolution,  4 Gauss-Newton iterations after a keyframe is
created): Even with such extreme settings, DSO achieves very
good accuracy and robustness on all three datasets.

Note that DSO is designed as a pure visual adometry
while ORB-SLAM constitutes a full SLAM system, including
loop-closure detection & correction and re-localization – all
these additional abilities are neglected or switched off in this
comparison.

Runtime. The required compute depends both on the number of
tracked frames, as well as the number of keyframes created (i.e.,
on how far the camera moves). On the TUM monoVO dataset,
the average single-threaded runtime for initial frame alignment
and candidate point tracking (performed for each frame) is 18 ms
(6.5 ms on “reduced” settings). Creating a new keyframe takes
143 ms (43 ms on “reduced” settings), also in a single thread.

4. All images are loaded, decoded, and pinhole-rectified beforehand.
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Fig. 15. Photometric calibration. Errors on the TUM-monoVO dataset
for ORB-SLAM and DSO, when incrementally disabling photometric cal-
ibration. While DSO as a direct method clearly benefits from photometric
calibration, ORB-SLAM as an indirect approach performs better on the
original images. We therefore use the original images for all other ORB-
SLAM evaluations.

4.2 Parameter Studies

This section aims at evaluating a number of different parameter
and algorithm design choices, using the TUM-monoVO dataset.

Photometric Calibration. We analyze the influence of photo-
metric calibration, verifying that it in fact increases accuracy
and robustness for direct methods. To this end, we incrementally
disable the different components:

1) exposure (blue): set ti = 1 and �a = �b = 0.
2) vignette (green): set V (x) = 1 (and 1.).
3) response (yellow): set G�1 = identity (and 1 – 2.).
4) brightness constancy (black): set �a = �b = 1, i.e.,

disable affine brightness correction (and 1 – 3.).

Figure 15 shows the result. As expected, DSO performs
significantly better with full photometric calibration, in particular
compared to a basic brightness constancy assumption (as
used in many other direct or semi-direct approaches like
LSD-SLAM or SVO). In turn, ORB-SLAM performs worse
when using photometrically calibrated images. In fact, the
photometric calibration only affects the keypoint selection (FAST
thresholding): For this step, using the original images – in
particular with enabled gamma correction – lead to a better point
distribution. Note that we observed the same behaviour for DSO,

Direct sparse odometry (DSO) [Engel et al ’18]

Minimize reprojected photometric error:

min
{ci},{ui},{dp}

∑
i∈F

∑
p∈Pi

∑
j∈Qp

fi,p,j (ci ,ui ,dp,uj ) + λ
∑
i∈F

g(ci ).
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Image classification

MNIST handwritten digits.

Minimize negative log-likelihood:

min
W ,b

− 1
N

N∑
n=1

log

(
exp(〈WYn,·,Xn〉+ bYn )∑10
k=1 exp(〈Wk,·,Xn〉+ bk )

)
+ R(W ,b).
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Driving cycle

Mathematical 
Modeling

Numerical 
Solution

Real-world 
Observation

validate

interpret

compute
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Appetizer: image segmentation

• Image segmentation / clustering:

image segmentation (L = 4)

• Variational method for finding label function u : Ω→ ∆L−1

min
u

∑
j∈Ω

(
δ{uj ∈ ∆L−1}+

〈
uj , fj

〉)
+ α

L∑
l=1

∑
i

ωi‖(∇ul )i‖,

where
• Pointwise constraint: ∆L−1 is the unit simplex in RL.
• Unary term: f : Ω→ RL is a pre-computed vector.
• Pairwise term:

∑
i ωi · (∇u l )i is the weighted total-variation.
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Prototypical workflow

• The variational model

min
u

∑
j∈Ω

(
δ{uj ∈ ∆L−1}+

〈
uj , fj

〉)
+ α

L∑
l=1

∑
i

ωi‖(∇ul )i‖,

is a special case of convex optimization

minimize J(u) + δ{u ∈ C},

with convex objective J and convex constraint C.

• This course is about theory and practice for solving
convex optimization problem that arise from computer
vision and machine learning.
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Prototypical workflow

• Put into canonical form:

min
u

F (Ku) + G(u), (primal)

where F ,G are convex functions, K is a linear operator.

• Reformulate the problem (by introducing dual variable p):

max
p
−F ∗(p)−G∗(−K>p), (dual)

max
p

min
u
〈Ku,p〉 − F ∗(p) + G(u), (saddle-point)

where F ∗ is the convex conjugate of F .

• Apply PDHG on the saddle-point formulation:

uk+1 = arg min
u

〈
u,K>pk

〉
+ G(u) +

s
2
‖u − uk‖2,

pk+1 = arg min
p
−
〈

K (2uk+1 − uk ),p
〉

+ F ∗(p) +
t
2
‖p − pk‖2.
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What you are expected to learn from this course

energy value primal-dual gap

• Does a minimizer always exist?
• How to characterize a minimizer via optimality condition?
• How to derive an (efficient) optimization algorithm?
• How to analyze the convergence?
• How to accelerate the convergence?
• Implementation in Matlab or Python.

Ready to start?


