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Overview of this section

Unconstrained, differentiable, possibly nonconvex optimization

Problem setting:

minimize J(u) over u ∈ E.
Assume:

1 J : E→ R is continuously differentiable.
2 There exists a global minimizer u∗. (Typically, an optim

algorithm seeks for a local minimizer s.t. ∇J(u∗) = 0.)

Methods under consideration:
1 (Scaled) gradient descent.
2 Line search method.
3 Majorize-minimize method.

Analytical questions:
1 Convergence (or not); global vs. local convergence.
2 Convergence rate (in special cases).
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Descent method

(uk, J(uk))

(uk+1, J(uk+1))

(uk+2, J(uk+2))

(u⇤, J(u⇤))

Descent method

Initialize u0 ∈ E. Iterate with k = 0,1,2, ...
1 If the stopping criteria ‖∇J(uk )‖ ≤ ε is not satisfied, then

continue; otherwise return uk and stop.

2 Choose a descent direction dk ∈ E s.t.〈
∇J(uk ),dk

〉
< 0.

3 Choose an “appropriate” step size τ k > 0, and update

uk+1 = uk + τ k dk .
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Descent direction

Theorem

If
〈
∇J(uk ),dk

〉
< 0, then J(uk + τdk ) < J(uk ) for all sufficiently

small τ > 0.

Proof: Use the Taylor expansion:

J(uk + τdk ) = J(uk ) + τ
〈
∇J(uk ),dk

〉
+ o(τ)

= J(uk ) + τ
(〈
∇J(uk ),dk

〉
+ o(1)

)
< J(uk ) as τ → 0+.

Choices of descent direction

1 Scaled gradient: dk = −(Hk )−1∇J(uk ).

2 Gradient/Steepest descent: Hk = I.
3 Newton: Hk = ∇2J(uk ), assuming J is twice continuously

differentiable and ∇2J(uk ) � 0.
4 Quasi-Newton: Hk ≈ ∇2J(uk ), Hk is spd.
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Gradient descent with exact line search
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• Gradient descent with exact line search:

uk+1 = uk − τ k∇J(uk ),

τ k = arg min
τ

J(uk − τ∇J(uk )).

• Case study: J(u) = 1
2 〈u,Qu〉 − 〈b,u〉, matrix Q is spd.

– ∇J(u) = Qu − b, ‖ · ‖2
Q ≡ 〈·,Q ·〉.

– τ k = arg minτ J(uk − τ∇J(uk )) =
‖∇J(uk )‖2

‖∇J(uk )‖2
Q
⇒

‖uk+1 − u∗‖2
Q =

(
1− ‖∇J(uk )‖4

‖∇J(uk )‖2
Q‖∇J(uk )‖2

Q−1

)
‖uk − u∗‖2

Q

≤
(
λmax(Q)− λmin(Q)

λmax(Q) + λmin(Q)

)2

‖uk − u∗‖2
Q .
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Inexact line search

Backtracking line search

• Sufficient decrease condition (let c1 ∈ (0,1)):

J(uk + τdk ) ≤ J(uk ) + c1τ
〈
∇J(uk ),dk

〉
. (A)

• Curvature condition (let c2 ∈ (c1,1)):〈
∇J(uk + τdk ),dk

〉
≥ c2

〈
∇J(uk ),dk

〉
. (C)

• (A) Armijo line search; (A) & (C) Wolfe-Powell l.s.

Armijo l.s. Wolfe-Powell l.s.

3 . 1 . S T E P L E N G T H 33

THE WOLFE CONDITIONS

A popular inexact line search condition stipulates that αk should first of all give
sufficient decrease in the objective function f , as measured by the following inequality:

f (xk + αpk) ≤ f (xk) + c1α∇ f T
k pk, (3.4)

for some constant c1 ∈ (0, 1). In other words, the reduction in f should be proportional to
both the step length αk and the directional derivative ∇ f T

k pk . Inequality (3.4) is sometimes
called the Armijo condition.

The sufficient decrease condition is illustrated in Figure 3.3. The right-hand-side of
(3.4), which is a linear function, can be denoted by l(α). The function l(·) has negative slope
c1∇ f T

k pk , but because c1 ∈ (0, 1), it lies above the graph of φ for small positive values of
α. The sufficient decrease condition states that α is acceptable only if φ(α) ≤ l(α). The
intervals on which this condition is satisfied are shown in Figure 3.3. In practice, c1 is chosen
to be quite small, say c1 $ 10−4.

The sufficient decrease condition is not enough by itself to ensure that the algorithm
makes reasonable progress because, as we see from Figure 3.3, it is satisfied for all sufficiently
small values of α. To rule out unacceptably short steps we introduce a second requirement,
called the curvature condition, which requires αk to satisfy

∇ f (xk + αk pk)T pk ≥ c2∇ f T
k pk, (3.5)

for some constant c2 ∈ (c1, 1), where c1 is the constant from (3.4). Note that the left-hand-
side is simply the derivative φ′(αk), so the curvature condition ensures that the slope of φ at
αk is greater than c2 times the initial slope φ′(0). This makes sense because if the slope φ′(α)

αl( )

φ (α f(x +) = kαk p )

acceptableacceptable

α

Figure 3.3 Sufficient decrease condition.
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φ (α ) = αpf(x + kk )
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Figure 3.5 Step lengths satisfying the Wolfe conditions.

It is not difficult to prove that there exist step lengths that satisfy the Wolfe conditions
for every function f that is smooth and bounded below.

Lemma 3.1.
Suppose that f : IRn → IR is continuously differentiable. Let pk be a descent direction at

xk , and assume that f is bounded below along the ray {xk + αpk |α > 0}. Then if 0 < c1 <

c2 < 1, there exist intervals of step lengths satisfying the Wolfe conditions (3.6) and the strong
Wolfe conditions (3.7).

PROOF. Note that φ(α) " f (xk + αpk) is bounded below for all α > 0. Since 0 < c1 < 1,
the line l(α) " f (xk) + αc1∇ f T

k pk is unbounded below and must therefore intersect the
graph of φ at least once. Let α′ > 0 be the smallest intersecting value of α, that is,

f (xk + α′ pk) " f (xk) + α′c1∇ f T
k pk . (3.8)

The sufficient decrease condition (3.6a) clearly holds for all step lengths less than α′.
By the mean value theorem (see (A.55)), there exists α′′ ∈ (0,α′) such that

f (xk + α′ pk) − f (xk) " α′∇ f (xk + α′′ pk)T pk . (3.9)

By combining (3.8) and (3.9), we obtain

∇ f (xk + α′′ pk)T pk " c1∇ f T
k pk > c2∇ f T

k pk, (3.10)

since c1 < c2 and ∇ f T
k pk < 0. Therefore, α′′ satisfies the Wolfe conditions (3.6), and the

inequalities hold strictly in both (3.6a) and (3.6b). Hence, by our smoothness assumption
on f , there is an interval around α′′ for which the Wolfe conditions hold. Moreover, since
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Convergence of backtracking line search

Lemma (feasibility of line search)

Assume that J : E→ R is continuously differentiable,〈
∇J(uk ),dk

〉
< 0 ∀k , and 0 < c1 < c2 < 1. Then there exists

an open interval in which the step size τ satisfies (A) and (C).

Proof: on board.

Theorem (Zoutendijk)

Assume that J : E→ R is cont’ly differentiable, and (A) and (C)
are both satisfied with 0 < c1 < c2 < 1 for each k . In addition,
J is µ-Lipschitz differentiable on {u ∈ E : J(u) ≤ J(u0)}. Then

∞∑
k=0

∣∣〈∇J(uk ),dk
〉∣∣2

‖dk‖2 <∞.

Proof: on board.

Remark

If

∣∣〈∇J(uk ),dk
〉∣∣

‖∇J(uk )‖‖dk‖
≥ constant > 0, then limk→∞ ‖∇J(uk )‖ = 0.
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Majorize-minimize method

Majorizing function

A function Ĵ(· ;u) is a majorant of J at u ∈ E if{
Ĵ(u;u) = J(u),

Ĵ(· ;u) ≥ J(·).

Majorize-minimize (MM) algorithm

Let Ĵ(·;u) majorize J ∀u ∈ E. Then the MM iteration reads:

uk+1 ∈ arg min
u

Ĵ(u;uk ).
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Ĵ(· ;u) ≥ J(·).

Majorize-minimize (MM) algorithm
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Gradient descent as MM

Remark

1 Monotonic decrease of objectives:

J(uk+1) ≤ Ĵ(uk+1;uk ) ≤ Ĵ(uk ;uk ) = J(uk ).

2 Efficiency of MM relies on the choice of the majorant
Ĵ(·;u), i.e., Ĵ(·;u) is easy to minimize.

3 Common choices of Ĵ(·;u) are quadratics.

Gradient descent as MM

• Observe that uk+1 = uk − τ∇J(uk ) iff

uk+1 = arg min
u

J(uk ) +
〈
∇J(uk ),u − uk

〉
+

1
2τ
‖u − uk‖2.

• When J(uk )+
〈
∇J(uk ), · − uk

〉
+ 1

2τ ‖ ·−uk‖2 ≥ J(·) holds?
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2 Efficiency of MM relies on the choice of the majorant
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Gradient descent as MM

Lemma

Assume that J : E→ R is µ-Lipschitz differentiable. Then
∀u, v ∈ E :

|J(v)− J(u)− 〈∇J(u), v − u〉 | ≤ µ

2
‖v − u‖2.

Proof: on board.

Theorem (convergence of gradient descent)

Assume that J : E→ R is µ-Lipschitz differentiable. Then the
gradient descent iteration

uk+1 = uk − τ∇J(uk )

with τ ∈ (0,1/µ] yields limk→∞∇J(uk ) = 0.

Proof: on board.

Recipe of convergence

By solving the surrogate problem in MM, we achieve: (1)
sufficient decrease in the objective; (2) inexact optimality
condition which matches the exact OC in the limit.
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