Proof Script for WS2018/19 Convex Optimization[

Last updated: November 5, 2018

1 Convex Analysis

Theorem 1.1 (separation of convex sets). Let Cy, Co be nonempty convex subsets in E.

1. Assume C is closed and Co = {w} C E\Cy1. Then Jv € E, v #0, a € R s.t.

(v,wy >a > (v,u), YueC.

2. Assume C is open and Cy = {w} C E\Ci. Then Jv € E, v #0, o € R s.t.

(v,wy > a>(v,u), YueC.

3. Assume C1 N Cy =0 and Cy is open. Then Jv €E, v #0, a € R s.t.

<v,u1> >a> <v,u2>, vul € C1, u? € Cs.

4. Assume () # int Cy C E\Cy. Then Jv € E, v #0, a € R s.t.

<v,u1> >a> <v,u2>, vul € C1, u? € Cs.

Proof. (1) Consider the projection of w onto Ci, i.e., set u* := argminyec, 3[u — w|/? or,
equivalently via the variational inequality: (u — u*, u* —w) > 0 Vu € C;. Now let v := w—u* #
0. Then Vu € Cy, we have (v,w) = (w—u*,w) = ||lw — u*||* + (w —u*,u*) > ||w — u*||* +
(w—u*u) = ||v]|* + {(v,u). Set a := sup{(v,u) : u € C1}. Note a < oo since (v,u) <
(v,u*) Yu € C. Thus (v,w) >« > (v,u) Yu € C1.

(2) Since E\Cj is closed, Jw* € E\clCy s.t. wF — w. For each w*, by (i), 0¥ € E with
[oF]| = 1 s.t. (¥, w*) < (v*,u) Vu € c1Cy. Hence v* — v € E along a subsequence s.t. [|v]| = 1
and a := (v, w) < (v,u) Yu € C; C clCh.

(3) Let C := Oy — C1 = {u? —u! : u! € Cy, u? € Cy}. Note that C is a convex, open
set, and 0 ¢ C. By (2), Jv € E with |jv|]| = 1 s.t. {(—v,u* —u!) > (—v,0) = 0 or, equivalently,
<v,u1> > <v,u2> Vul € Cp, u? € Cy. Set o := sup{<v,u2> :u? € Cy}, then we conclude that
<U,u1> > o> <U,u2> vul € Oy, u? € Cs.

(4) By applying (3) to int C; and Cq, we have <v,u1> >a> <v,u2> Vul € int Oy, u? € C.
The inequality remains true for all u; € Cj. O
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Theorem 1.2. A proper convex function J : E — R is locally Lipschitz at any u € rint dom J.

Proof. Throughout the proof, we consider J : aff dom J — R.

(i) Claim: If M = sup{J(v) : v € Be(u)} < oo with € > 0, then J is locally Lipschitz at u.

First, by convexity of J we have Vv € B(u) : J(v) > 2J(u) — J(2u —v) > 2J(u) — M. Thus,
sup{|J(v)| : v € Be(u)} < M + 2|J(u)].

Next, we show J is Lipschitz on Bj(u). Let v,w € Bjy(u) be given. Take z € Be(u)
s.t. w = (1 —t)v + tz for some t € [0,1] and ||z — v|| > €/2. By convexity, J(w) — J(v) <
t(J(z)—J(v)) < 2t(M —J(u)). Since t(z—v) = w—v, we have t = ||w—v||/||z—v| < 2|lw—wv]||/e
and J(w) — J(v) < (4M — J(u))/e)|lw — v||. Analogously, one can show J(v) — J(w) <
(4(M — J(u))/€)|lw — v]|. Hence, J is Lipschitz on B j5(u) with modulus 4(M — J(u))/e.

(ii) Let u € rint dom J and n = dim(aff dom J). Then by Carathéodory’s theorem, oyt
(0,1), {u'}"} € dom J s.t. u = Y1 atul, S af =1, ie., u belongs to the interior of the

convex hull of {u’}?Jrl Thus one can apply (i) to assert that J is locally Lipschitz at wu. O

Theorem 1.3. For any proper convex function J : E — R, if u* € dom.J is a local minimizer
of J, then it is also a global minimizer.

Proof. By the definition of a local minimizer, 3¢ > 0 s.t. J(u*) < J(u) Yu € B(u*). For
)-

the sake of contradiction, assume Ju € E s.t. J(u) < J(u*). By convexity of J, we have
J(ou + (1 — a)u*) < J(u*) — a(J(u*) — J(u)) < J(u*) Ya € (0,1]. This violates the local
optimality of u* as a — 0. O

Theorem 1.4. Any proper function J : E — R, which is bounded from below, coercive, and lsc,
has a (global) minimizer.

Proof. Let {u*} be an infimizing sequence for J, i.e., limg_,o0 J(u*) = inf,eg J(u) > —o0. Since
{J(u*)} is uniformly bounded from above, by coercivity of J {u¥} is uniformly bounded. By
compactness, u¥ — u* along a subsequence. Since .J is Isc, we have J(u*) < liminfy_,o J(u¥) =
inf,eg J(u), which implies J(u*) = infyeg J(u) or w* is a minimizer of J. O

Theorem 1.5. The minimizer of a strictly convex function J : E — R is unique.

Proof. Let u,v € E be two (global) minimizers s.t. u # v and J(u) = J(v) = J*. By strict
convexity of J, J(au+ (1 —a)v) < aJ(u)+ (1 —a)J(v) = J* for all a € (0,1), which contradicts
the global optimality of v and v. O

Theorem 1.6. Let J : E — R be a convex function. Then for any u € intdomJ, 0J(u) is a
nonempty, compact, and convex subset.

Proof. (i) nonemptiness. Since (u,J(u)) ¢ intepiJ, by Theorem we have 3(p, —a) € E x
R s.t. (p,—a) # (0,0), @ > 0 by our choice, and ((p, —«), (u — v, J(u) — J(v))) > 0 Vv € dom J.
In fact, we must have a > 0 since otherwise p = 0. Thus, we conclude that p/a € 9J(u).

(ii) boundedness. By Theorem|[L.2] J is locally Lipschitz at u with modulus L,,. Let p € 0.J(u)
be fixed. For any h € (domJ) — u whenever ||k is sufficiently small, we have (p,h) < J(u +
h) — J(u) < Ly||h||. This holds true only if ||p|| < L, which implies boundedness of 9.J(u).

(iii) closedness. Let v € E be arbitrarily fixed and p* — p* where each p* € dJ(u). Then
Vk : J(v) — J(u) > (p¥,v — u). By continuity, J(v) — J(u) > (p*,v — u) when passing k — oc.
Since v can be arbitrary, we assert p* € 9.J(u).



(iv) convexity. Let v € E be arbitrarily fixed, and p,q € 0J(u). Then we have
J(v) > J(u) + (p,v —u),
J(v) > J(u) + (q,v —u).
Hence, VO < a <1:J(v) > J(u) + (ap + (1 — a)q,v —u), i.e., ap+ (1 — a)q € IJ (u). O

Theorem 1.7. Let J : E — E be a convex function. Then 0J is a monotone operator, i.e.
Vul,u? € dom J, p' € dJ(u'), p? € 8J(u?) :

<p1 — 2l — u2> > 0.

Proof. By applying the definition of subdifferential at arbitrarily given u',u? € dom J, we have

<u2 (ul) <p1’u2 —'LL1>,

) >
(ul) > (’LL2) <p2’u1 _ u2> )
Adding the two inequalities yields <p1 —p?ul — u2> > 0. o

Theorem 1.8. Let J : E — R be a proper, convez, Isc function. Then 0J is a closed set-valued
map, i.e., p* € 0J(u*) whenever

Ik, p*) = (u*,p*) € (dom J) x E s.t. p* € 0J(u*) VE.

Proof. Let v € E be arbitrarily fixed. For each k, p* € dJ(u*) = J(v) > J(u¥) + (p*,v — u*).
Passing k — oo, we have <pk,v —uk> — (p*,v —u*) and J(u*) < liminfg_,o J(u¥). Hence,
J(u*) + (p*, v —u*) < liminfy,oo{J(u*) + (p*,v —u*)} < J(v). Since v can be arbitrary,
p* € 0J(u*). O

Theorem 1.9. Given any proper conver function J : E — R, the sufficient and necessary
condition for u* being a (global) minimizer for J is: 0 € 0J(u*).

)+ (0,u —u*) = J(u*) Yu € E.

Proof. (i) sufficiency. 0 € 9J(u*) = J(u) > J(u =
)+ (0,u—u*) < J(u) Yu = 0€dJ(u). O

(ii) necessity. J(u*) < J(u) Vu e E = J(u
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