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Lipschitz fixed-point iteration

Fixed-point iteration

Φ : C → C , where C is a nonempty, closed, convex subset of E

uk+1 = Φ(uk). (1)

Lipschitz operator

Φ µ-Lipschitz (µ ≥ 0): ∀u, v ∈ C : ‖Φ(u)− Φ(v)‖ ≤ µ‖u − v‖.
Φ contractive: µ < 1; Φ nonexpansive: µ = 1.

contractive ⇒ linear convergence

Using Banach fixed point theorem, we have that when Φ is contractive:
1. Eq.(1) converges to u∗; 2. linearly: ‖uk+1 − u∗‖ ≤ µ‖uk − u∗‖.

Problem

Most operator we encounter are only nonexpansive: proj, prox, refl ...
 we need more refined analysis of nonexpansive operators!
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Averaged operators: “damped” nonexpansive operators

Definition

Φ is α-averaged with 0 < α < 1 if

Φ = (1− α)I + αΨ, with Ψ : C → C nonexpansive.

Φ firmly nonexpansive: α = 1
2

Equivalent definitions of α-averaged

1 (1− 1
α)I + 1

αΦ is nonexpansive.

2 ∀u, v ∈ C : ‖Φ(u)− Φ(v)‖2 ≤ ‖u − v‖2 − 1−α
α
‖(I − Φ)(u)− (I − Φ)(v)‖2.

3 ∀u, v ∈ C : ‖Φ(u)−Φ(v)‖2 + (1− 2α)‖u − v‖2 ≤ 2(1− α) 〈u − v ,Φ(u)− Φ(v)〉 .

Remark (2), (3) can be more practical for proving Φ is α-averaged.

Properties for constructing more averaged operators

The composition and convex combination conserve the “averagedness”.
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Convergence with averaged operators

Theorem (Krasnoselskii)

1 Φ is α-averaged for some α ∈ (0, 1).

2 Φ has at least one fixed point.

Then {uk} converges to a fixed point of Φ.

Theorem (Krasnoselskii-Mann)

uk+1 = (1− τk)uk + τkΨ(uk) where

1 Ψ : C → C is nonexpansive and has at least one fixed point.

2 {τk} ⊂ [0, 1] s.t.
∑∞

k=0 τ
k(1− τk) =∞

Then {uk} converges to a fixed point of Ψ.

Remarks on Krasnoselskii-Mann Theorem

“Customized damping”, Fulfilled if {τk} ⊂ [ε, 1− ε] for some ε ∈ (0, 1/2].
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What operators are averaged?

Overview

proj firmly nonexpansive (see exercise sheet 11 ex2 or below)

prox firmly nonexpansive (use e.g. last equivalent definition)

refl nonexpansive only (refl = 2 * prox - Id)

Gradient descent if G is µ-Lipschitz differentiable and τ ∈ (0, 2/µ), then
I − τ∇G is (τµ/2)-averaged (Corollary of Baillon-Haddad)

CPI if M is spd and R is maximal monotone, then
Φ(cpi) = (M + R)−1M is firmly nonexpansive in the
Euclidean space with scaled inner-product < ·, · >M

Remark on CPI
1 The notions of Lipschitz, nonexpansive, averaged etc. all depend on

the choice of inner product (which induce the norm).

2 The convergence doesn’t depend on the choice of inner product,
Since all norms are equivalent in Euclidean space.
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Convergence of the proximal algorithms: an overview

Convergence that we can proof:

FBS composition pf prox and gradient descent, so averaged if G
is µ-Lipschitz differentiable and τ ∈ (0, 2/µ).

DRS Φ(drs) = 1
2 I + 1

2 reflτF ◦ reflτG , so firmly nonexpansive

PDHG direct from CPI: firmly nonexpansive if s × t > ‖K‖2spec

About ADMM

We can not use CPI conditions: M is only spsd, not spd; However:

We can make M spd using e.g. the variant in exercise sheet 10 ex1.
Then we can prove convergence of the variant!

About PRS

Doesn’t have convergence guarantee, since composition of nonexpansive
operators are just nonexpansive.
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Linear convergence under strong monotonicity

Strongly monotone operator

I R is said µ-strongly monotone if R − µI is monotone.

I For proper, convex, lsc function J, ∂J is µ-strongly monotone iff J is
µ-strongly convex, i.e., J − µ

2‖ · ‖
2 is convex.

R is µ-strongly monotone

⇒
〈
uk+1 − u∗, ξk+1 − 0

〉
≥ µ‖uk+1 − u∗‖2 (2)

⇒ ‖uk+1 − u∗‖M ≤

√
1

1 + 2µ/λmax(M)
‖uk − u∗‖M . (3)

Recall in PDHG/ADMM:

R =

[
∂G K>

−K ∂F ∗

]
.

R is µ-strongly monotone ⇔ G , F ∗ are µ-strongly convex;

F ∗ is µ-strongly convex ⇔ F is 1
µ -Lipschitz differentiable.
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