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Minimizer

Theorem

Any proper function J : E→ R, which is bounded from below, coercive,
and lsc, has a (global) minimizer.

Above theorem works for all proper functions.

Global minimizer and local minimizer.

strictly convex ensures uniqueness.
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Subdifferential

Subdifferential

The subdifferential of a convex function J : E→ R̄ at u ∈ domJ is
defined by

∂J(u) = {p ∈ E : J(v) ≥ J(u) + 〈p, v − u〉, ∀v ∈ E}

relation to supporting hyperplane.

a set-valued map. Monotone operator. convex, nonempty, compact.

special case.

calculus(requirements): chain rule, summation rule.

optimality condition and normal cone.
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Convex Conjugate

Convex Conjugate

Given a function J : E→ R̄, the convex conjugate (a.k.a.
Legendre-Fenchel transform) of J is defined by

J∗(p) = sup
u∈E
〈u, p〉 − J(u), ∀p ∈ E.

Properties: scalar, translation.

J(u) + J∗(p) ≥ 〈u, p〉, ”=” iff p ∈ ∂J(u).
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