Convex Optimization for Machine Learning and Computer Vision

Tutorial

28.11.2018

Contents

Duality Theory

Proximal Operator

Duality Theory

Theorem (Fenchel-Rockafellar duality)

Assume $\exists \bar{u} \in \text{dom } G$ s.t. F is continuous at $K\bar{u}$. Then the **strong duality** holds: $\mathcal{P}^* = \mathcal{D}^*$. Moreover, (u^*, p^*) is the optimal solution pair iff

$$\begin{cases} Ku^* \in \partial F^*(p^*), \\ -K^\top p^* \in \partial G(u^*). \end{cases}$$

$$\inf_{u}$$
 $G(u) + F(Ku)$ "Primal"
= $\inf_{u} \sup_{p}$ $G(u) + \langle p, Ku \rangle - F^{*}(p)$ "Saddle point"
= $\sup_{p} \inf_{u}$ $G(u) + \langle p, Ku \rangle - F^{*}(p)$
= \sup_{p} $-G^{*}(-K^{\top}p) - F^{*}(p)$ "Dual"

Duality gap: $G(u, p) = F(Ku) + G(u) + G^*(-K^T p) + F^*(p)$

Proximal operator

Definition

Given a proper, convex, lsc function $J: \mathbb{E} \to \overline{\mathbb{R}}$, we define the **proximal** operator of J by

$$prox_{\tau J}(v) = arg \min_{u} J(u) + \frac{1}{2\tau} ||u - v||^{2}.$$

- proximal gradient: gradient step on differentiable part and proximal step on non-differentiable.
- resolvent: $prox_{\tau I} = (I + \tau \partial J)^{-1}$.
- fixed point (minimizer), Moreau identity.

Moreau envelope

Definition

The **Moreau envelope** of a proper, convex, lsc function $J: \mathbb{E} \to \overline{\mathbb{R}}$ is defined for each $u \in \mathbb{E}$ by

$$\operatorname{env}_{\tau J}(u) := \left(J \square \frac{1}{2\tau} ||\cdot||^2 \right) (u)$$

$$= \inf_{v \in \mathbb{E}} \left\{ J(v) + \frac{1}{2\tau} ||v - u||^2 \right\}$$

$$= J(\operatorname{prox}_{\tau J}(u)) + \frac{1}{2\tau} ||\operatorname{prox}_{\tau J}(u) - u||^2.$$
(2)

- A smoothed form of original function.
- Moreau envelope has the same minimizers of J.
- prox can be viewed as a gradient step on Moreau envelope.