Convex Optimization for Machine Learning and Computer Vision

Tutorial

12.12.2018

Contents

(1) Gradient descent

(2) Proximal gradient (Forward-Backward Splitting)

Overview

Problem settings

$$
\text { minimize } J(u) \text { over } u \in \mathbb{E} \text {. }
$$

Assume:
(1) $J: \mathbb{E} \rightarrow \mathbb{R}$ is continuously differentiable $\left(C^{1}\right)$.
(2) There exists a global minimizer u^{*}. (Typically, an optim algorithm seeks for a local minimizer s.t. $\nabla J\left(u^{*}\right)=0$.)

Overview

Problem settings

$$
\text { minimize } J(u) \text { over } u \in \mathbb{E}
$$

Assume:
(1) $J: \mathbb{E} \rightarrow \mathbb{R}$ is continuously differentiable $\left(C^{1}\right)$.
(2) There exists a global minimizer u^{*}. (Typically, an optim algorithm seeks for a local minimizer s.t. $\nabla J\left(u^{*}\right)=0$.)

Gradient descent approach

(1) Initialize $u^{0} \in \mathbb{E}$ (often just randomly). Iterate $(k=0,1,2, \ldots)$ till convergence ($\left\|\nabla J\left(u^{k}\right)\right\| \leq \epsilon$):
(2) Choose a descent direction $d^{k} \in \mathbb{E}$ s.t. $\left\langle\nabla J\left(u^{k}\right), d^{k}\right\rangle<0$ and a step size $\tau^{k}>0$, "Appropriately".
(3) Update $u^{k+1}=u^{k}+\tau^{k} d^{k}$.

Choice of descent direction d^{k} and step size τ^{k}

How to choose descent direction?
Scaled gradient: $d^{k}=-\left(H^{k}\right)^{-1} \nabla J\left(u^{k}\right), H^{k}$ spd (why?). Examples: Steepest descent: $H^{k}=I$; Newton $\left(J\right.$ is $\left.C^{2}\right): H^{k}=\nabla^{2} J\left(u^{k}\right)$ spd; Quasi-Newton: $H^{k} \approx \nabla^{2} J\left(u^{k}\right)$ spd.

Choice of descent direction d^{k} and step size τ^{k}

How to choose descent direction?

Scaled gradient: $d^{k}=-\left(H^{k}\right)^{-1} \nabla J\left(u^{k}\right), H^{k}$ spd (why?). Examples: Steepest descent: $H^{k}=I$; Newton $\left(J\right.$ is $\left.C^{2}\right): H^{k}=\nabla^{2} J\left(u^{k}\right)$ spd; Quasi-Newton: $H^{k} \approx \nabla^{2} J\left(u^{k}\right)$ spd.

How to choose step size?

"Small enough": (Thm) ensures $J\left(u^{k}+\tau d^{k}\right)<J\left(u^{k}\right)$ (decrease of J) so long as $\left\langle\nabla J\left(u^{k}\right), d^{k}\right\rangle<0$.
Exact line search: find the best τ^{k} along the direction, often unrealistic! Inexact line search: find a good enough τ^{k} that ensures convergence.

- (A) Sufficient decrease condition (with $c_{1} \in(0,1)$)
- (C) Curvature condition (with $c_{2} \in\left(c_{1}, 1\right)$)
- (A) \rightsquigarrow Armijo line search; $(A) \&(C) \rightsquigarrow$ Wolfe-Powell I.s.
- (Lemma) (A)+(C) is feasible; (Thm, Zoutendijk) "converge easily".

Backtracking (inexact) line search: some details

Why the name " backtracking"?

In practice, we start with a big estimate of τ^{k} and shrinks it until (A) + (C) are satisfied.

Backtracking (inexact) line search: some details

Why the name " backtracking"?

In practice, we start with a big estimate of τ^{k} and shrinks it until $(\mathrm{A})+$ (C) are satisfied.

Thm. Zoutendijk: a closer look

(A) $+(\mathrm{C})+J \mu$-Lipschitz diff. \rightsquigarrow

$$
\sum_{k=0}^{\infty} \cos \left(\theta^{k}\right)^{2}\left\|\nabla J\left(u^{k}\right)\right\|^{2}<\infty
$$

with

$$
\cos \left(\theta^{k}\right)=\left\langle\nabla J\left(u^{k}\right), d^{k}\right\rangle /\left(\left\|\nabla J\left(u^{k}\right)\right\|\left\|d^{k}\right\|\right)
$$

Remark: $-\cos \left(\theta^{k}\right) \geq c>0 \Longrightarrow \lim _{k \rightarrow \infty}\left\|\nabla J\left(u^{k}\right)\right\|=0$
i.e. good enough direction ensures convergence!

Majorize-minimize algorithm

- Main idea: iteratively minimize an easy upper bound instead!
- Majorant: $\widehat{\jmath}$ s.t. $\widehat{J}(\cdot ; u)$ is a pointwise upper bound at $u \in \mathbb{E}$:
(1) $\widehat{J}(u ; u)=J(u)$ (coincide at $u)$;
(2) $\hat{J}(\cdot ; u) \geq J(\cdot)$ (upper bound at u).
- Algorithm: $u^{k+1} \in \arg \min _{u} \widehat{J}\left(u ; u^{k}\right)$.

Monotonic Decrease: $J\left(u^{k+1}\right) \leq \widehat{J}\left(u^{k+1} ; u^{k}\right) \leq \widehat{J}\left(u^{k} ; u^{k}\right)=J\left(u^{k}\right)$.

Majorize-minimize algorithm

- Main idea: iteratively minimize an easy upper bound instead!
- Majorant: \widehat{J} s.t. $\widehat{J}(\cdot ; u)$ is a pointwise upper bound at $u \in \mathbb{E}$:
(1) $\widehat{J}(u ; u)=J(u)$ (coincide at $u)$;
(2) $\widehat{J}(\cdot ; u) \geq J(\cdot)$ (upper bound at $u)$.
- Algorithm: $u^{k+1} \in \arg \min _{u} \widehat{J}\left(u ; u^{k}\right)$.

Monotonic Decrease: $J\left(u^{k+1}\right) \leq \widehat{J}\left(u^{k+1} ; u^{k}\right) \leq \widehat{J}\left(u^{k} ; u^{k}\right)=J^{\prime}\left(u^{k}\right)$.

Gradient descent as majorize-minimize algorithm

Let $J: \mathbb{E} \rightarrow \mathbb{R}$ is μ-Lipschitz diff., and $\tau \in(0,1 / \mu]$. Then we have:

- $\widehat{J}\left(u, u^{k}\right)=J\left(u^{k}\right)+\left\langle\nabla J\left(u^{k}\right), u-u^{k}\right\rangle+\frac{1}{2 \tau}\left\|u-u^{k}\right\|^{2}$ is a majorant.
- $u^{k+1}=\arg \min _{u} \widehat{J}\left(u, u^{k}\right) \rightsquigarrow$ convergent GD: $\lim _{k \rightarrow \infty} \nabla J\left(u^{k}\right)=0$.

Proximal gradient (Forward-Backward Splitting)

Problem settings

$$
\min _{u} F(u)+G(u)
$$

where G is convex differentiable but F is only convex, proper, Isc.
Remark: gradient descent not applicable: F might not be differentiable.

Proximal gradient (Forward-Backward Splitting)

Problem settings

$$
\min _{u} F(u)+G(u)
$$

where G is convex differentiable but F is only convex, proper, Isc.
Remark: gradient descent not applicable: F might not be differentiable.

Approach

Forward-backward splitting (FBS, or proximal gradient):

$$
\begin{align*}
u^{k+1} & =\operatorname{prox}_{\tau F}\left(u^{k}-\tau \nabla G\left(u^{k}\right)\right) \tag{1}\\
& =(I+\tau \partial F)^{-1} \circ(I-\tau \nabla G)\left(u^{k}\right) . \tag{2}
\end{align*}
$$

How to ensure convergence?

Regularity condition on F, G and "appropriate" choice of τ, see later :).

