Convex Optimization for Machine Learning and Computer Vision

Tutorial

12.12.2018

Tao, Yuesong, Zhenzhang

Convex Optimization for Machine Learning and Computer Vision 1

Proximal gradient (Forward-Backward Splitting)

Overview

Problem settings

minimize J(u) over $u \in \mathbb{E}$.

Assume:

• $J: \mathbb{E} \to \mathbb{R}$ is continuously differentiable (C^1) .

② There exists a global minimizer u^* . (Typically, an optim algorithm seeks for a local minimizer s.t. $\nabla J(u^*) = 0$.)

Overview

Problem settings

minimize J(u) over $u \in \mathbb{E}$.

Assume:

- $J: \mathbb{E} \to \mathbb{R}$ is continuously differentiable (C^1) .
- **2** There exists a global minimizer u^* . (Typically, an optim algorithm seeks for a local minimizer s.t. $\nabla J(u^*) = 0$.)

Gradient descent approach

- Initialize $u^0 \in \mathbb{E}$ (often just randomly). Iterate (k = 0, 1, 2, ...) till convergence $(\|\nabla J(u^k)\| \le \epsilon)$:
- Ochoose a descent direction d^k ∈ E s.t. ⟨∇J(u^k), d^k⟩ < 0 and a step size τ^k > 0, "Appropriately".

$$\textbf{O} \quad \mathsf{Update} \ u^{k+1} = u^k + \tau^k d^k.$$

Choice of descent direction d^k and step size τ^k

How to choose descent direction?

Scaled gradient: $d^k = -(H^k)^{-1}\nabla J(u^k)$, H^k spd (why?). Examples: Steepest descent: $H^k = I$; Newton (J is C²): $H^k = \nabla^2 J(u^k)$ spd; Quasi-Newton: $H^k \approx \nabla^2 J(u^k)$ spd.

Choice of descent direction d^k and step size τ^k

How to choose descent direction?

Scaled gradient: $d^k = -(H^k)^{-1}\nabla J(u^k)$, H^k spd (why?). *Examples*: <u>Steepest descent</u>: $H^k = I$; <u>Newton</u> (J is C^2): $H^k = \nabla^2 J(u^k)$ spd; <u>Quasi-Newton</u>: $H^k \approx \nabla^2 J(u^k)$ spd.

How to choose step size?

"Small enough": (Thm) ensures $J(u^k + \tau d^k) < J(u^k)$ (decrease of J) so long as $\langle \nabla J(u^k), d^k \rangle < 0$. Exact line search: find the best τ^k along the direction, often unrealistic! Inexact line search: find a good enough τ^k that ensures convergence.

- (A) Sufficient decrease condition (with $c_1 \in (0,1)$)
- (C) Curvature condition (with $c_2 \in (c_1, 1)$)
- (A) \rightsquigarrow Armijo line search; (A) & (C) \rightsquigarrow Wolfe-Powell I.s.
- (Lemma) (A)+(C) is feasible; (Thm, Zoutendijk) "converge easily".

Backtracking (inexact) line search: some details

Why the name "backtracking"?

In practice, we start with a big estimate of τ^k and shrinks it until (A) + (C) are satisfied.

Backtracking (inexact) line search: some details

Why the name "backtracking"?

In practice, we start with a big estimate of τ^k and shrinks it until (A) + (C) are satisfied.

Thm. Zoutendijk: a closer look

A) + (C) + J
$$\mu$$
-Lipschitz diff. \rightsquigarrow

$$\sum_{k=0}^{\infty}\cos(\theta^k)^2\|\nabla J(u^k)\|^2<\infty.$$

 $\cos(\theta^k) = \left\langle \nabla J(u^k), d^k \right\rangle / (\|\nabla J(u^k)\| \|d^k\|)$

Remark: $-\cos(\theta^k) \ge c > 0 \Longrightarrow \lim_{k\to\infty} \|\nabla J(u^k)\| = 0$ i.e. good enough direction ensures convergence!

with

Tao, Yuesong, Zhenzhang

Convex Optimization for Machine Learning and Computer Vision

Majorize-minimize algorithm

- Main idea: iteratively minimize an easy upper bound instead!
- Majorant: Ĵ s.t. Ĵ(·; u) is a pointwise upper bound at u ∈ E:

$$\widehat{J}(u; u) = J(u) \text{ (coincide at } u);$$

2
$$J(\cdot; u) \ge J(\cdot)$$
 (upper bound at u)

• Algorithm: $u^{k+1} \in \arg \min_u \widehat{J}(u; u^k)$.

Monotonic Decrease: $J(u^{k+1}) \leq \widehat{J}(u^{k+1}; u^k) \leq \widehat{J}(u^k; u^k) = J(u^k)$.

Majorize-minimize algorithm

- Main idea: iteratively minimize an easy upper bound instead!
- Majorant: Ĵ s.t. Ĵ(·; u) is a pointwise upper bound at u ∈ E:

$$\widehat{J}(u; u) = J(u) \text{ (coincide at } u);$$

2
$$J(\cdot; u) \ge J(\cdot)$$
 (upper bound at u)

• Algorithm: $u^{k+1} \in \arg \min_u \widehat{J}(u; u^k)$.

6 / 7

Monotonic Decrease: $J(u^{k+1}) \leq \widehat{J}(u^{k+1}; u^k) \leq \widehat{J}(u^k; u^k) = J(u^k)$.

Gradient descent as majorize-minimize algorithm

Let $J: \mathbb{E} \to \mathbb{R}$ is μ -Lipschitz diff., and $\tau \in (0, 1/\mu]$. Then we have:

•
$$\widehat{J}(u, u^k) = J(u^k) + \langle \nabla J(u^k), u - u^k \rangle + \frac{1}{2\tau} ||u - u^k||^2$$
 is a majorant.

• $u^{k+1} = \arg \min_u \widehat{J}(u, u^k) \rightsquigarrow \text{ convergent GD: } \lim_{k \to \infty} \nabla J(u^k) = 0.$

Proximal gradient (Forward-Backward Splitting)

Problem settings

$$\min_{u} F(u) + G(u),$$

where G is convex differentiable but F is only convex, proper, lsc. Remark: gradient descent not applicable: F might not be differentiable.

Proximal gradient (Forward-Backward Splitting)

Problem settings

$$\min_{u} F(u) + G(u),$$

where G is convex differentiable but F is only convex, proper, lsc. Remark: gradient descent not applicable: F might not be differentiable.

Approach

Forward-backward splitting (FBS, or proximal gradient):

$$u^{k+1} = \operatorname{prox}_{\tau F}(u^k - \tau \nabla G(u^k)) \tag{1}$$

$$= (I + \tau \partial F)^{-1} \circ (I - \tau \nabla G)(u^k).$$
⁽²⁾

How to ensure convergence?

Regularity condition on F, G and "appropriate" choice of τ , see later :).