Convex Optimization for Machine Learning and

Computer Vision

Tutorial

12.12.2018

Tao, Yuesong, Zhenzhang Convex Optimization for Machine Learning and Computer Vision

Contents

@ Gradient descent

© Proximal gradient (Forward-Backward Splitting)

Tao, Yuesong, Zhenzhang Convex Optimization for Machine Learning and Computer Vision

Overview

Problem settings

minimize J(u) over u € E.

Assume:
@ J:E — Ris continuously differentiable (C1).

@ There exists a global minimizer u*. (Typically, an optim algorithm
seeks for a local minimizer s.t. VJ(u*) =0.)

Tao, Yuesong, Zhenzhang Convex Optimization for Machine Learning and Computer Vision

Overview

Problem settings

minimize J(u) over u € E.

Assume:
@ J:E — R is continuously differentiable (C1).

@ There exists a global minimizer u*. (Typically, an optim algorithm
seeks for a local minimizer s.t. VJ(u*) =0.)

v

Gradient descent approach

O Initialize u® € E (often just randomly). lterate (k = 0,1,2,...) till
convergence (||VJ(u")| < ¢):

@ Choose a descent direction d* € E s.t. (VJ(u¥),d*) < 0 and a
step size 7% > 0, " Appropriately’.

© Update vkt = yk 4 rhdk.

A\

Tao, Yuesong, Zhenzhang Convex Optimization for Machine Learning and Computer Vision

Choice of descent direction d* and step size 7

How to choose descent direction?

Scaled gradient: d¥ = —(H¥)~1VJ(u¥), H* spd (why?).
Examples: Steepest descent: H = I; Newton (J is C2): H* = V2J(u)

spd; Quasi-Newton: H* =~ V2 J(u*) spd.

Convex Optimization for Machine Learning and Computer Vision

Tao, Yuesong, Zhenzhang

Choice of descent direction d* and step size 7%

How to choose descent direction?

Scaled gradient: d¥ = —(H¥)~1VJ(u¥), H* spd (why?).
Examples: Steepest descent: H* = I; Newton (J is C2): H* = V2J(u*)

spd; Quasi-Newton: H* ~ V2J(u*) spd.

How to choose step size?

”Small enough”: (Thm) ensures J(u* + 7d*) < J(u¥) (decrease of J) so
long as (VJ(u*),d*) < 0.

Exact line search: find the best 7% along the direction, often unrealistic!
Inexact line search: find a good enough 7% that ensures convergence.

e (A) Sufficient decrease condition (with ¢; € (0, 1))

@ (C) Curvature condition (with ¢; € (c1,1))

e (A) ~» Armijo line search; (A) & (C) ~» Wolfe-Powell |.s.

@ (Lemma) (A)+(C) is feasible; (Thm, Zoutendijk) " converge easily”.

Tao, Yuesong, Zhenzhang Convex Optimization for Machine Learning and Computer Vision 4/7

Backtracking (inexact) line search: some details

Why the name " backtracking” ?

In practice, we start with a big estimate of 7% and shrinks it until (A) +
(C) are satisfied.

Tao, Yuesong, Zhenzhang

Convex Optimization for Machine Learning and Computer Vision

Backtracking (inexact) line search: some details

Why the name " backtracking” ?

In practice, we start with a big estimate of 7% and shrinks it until (A) +
(C) are satisfied.

Thm. Zoutendijk: a closer look

| A\

(A) + (C) + J p-Lipschitz diff. ~

o (@) =fvrop,)

Zcos 0%)2|VJ(u")|? <

with
e | cos(0%) = (VI(uK), d<) /(IV () |

acceptable

Remark: — cos(6%) > ¢ > 0 = limy_.o [|VJ(uX)|| = 0O
i.e. good enough direction ensures convergence!

Tao, Yuesong, Zhenzhang Convex Optimization for Machine Learning and Computer Vision 5/7

Majorize-minimize algorithm

15

e Main idea: iteratively minimize an easy
upper bound instead!
o Majorant:J s.t. JA(;u) is a pointwise
upper bound at uv € E:
(1) .T(u; u) = J(u) (coincide at u); 05
@ J(-;u) > J() (upper bound at u).

o Algorithm: u**1 € argmin, J(u; u¥).

Cost

0

o o o

Monotonic Decrease: J(ukt1) < J(uk+t; uk) < J(uk; uk) = J(u¥).

Tao, Yuesong, Zhenzhang

Convex Optimization for Machine Learning and Computer Vision

Majorize-minimize algorithm

15

e Main idea: iteratively minimize an easy
upper bound instead!

o Majorant:J s.t. J(-;u) is a pointwise)
upper bound at u € E: 8

(1) .Z(u; u) = J(u) (coincide at u); 05

@ J(-;u) > J(-) (upper bound at u).
o Algorithm: u**1 € argmin, J(u; u¥).

C
0 s

o o o

Monotonic Decrease: J(ukt1) < J(uk+t; uk) < J(uk; uk) = J(u¥).

Gradient descent as majorize-minimize algorithm

Let J: E — R is p-Lipschitz diff., and 7 € (0,1/u]. Then we have:

= 1
o J(u,u*) = J(uk) +(VJI(uk),u—uk) + ZHU — u¥||? is a majorant.

o uk*! = argmin, J(u, uX) ~ convergent GD: lim_,, VJ(u) = 0.

Tao, Yuesong, Zhenzhang

Convex Optimization for Machine Learning and Computer Vision

Proximal gradient (Forward-Backward Splitting)

Problem settings

muin F(u) + G(u),

where G is convex differentiable but F is only convex, proper, Isc.
Remark: gradient descent not applicable: F might not be differentiable.

Tao, Yuesong, Zhenzhang Convex Optimization for Machine Learning and Computer Vision

Proximal gradient (Forward-Backward Splitting)

Problem settings
min F(u) + G(u),

where G is convex differentiable but F is only convex, proper, Isc.
Remark: gradient descent not applicable: F might not be differentiable.

Approach

| A

Forward-backward splitting (FBS, or proximal gradient):

uk 1 = prox. p(u* — TV G(u¥)) (1)
= (I +70F) ™ o (I — TV G)(u¥). (2)

How to ensure convergence?
Regularity condition on F, G and "appropriate” choice of 7, see later :).

Tao, Yuesong, Zhenzhang Convex Optimization for Machine Learning and Computer Vision

	Gradient descent
	Proximal gradient (Forward-Backward Splitting)

