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Overview

Problem settings

minimize J(u) over u ∈ E.

Assume:
1 J : E→ R is continuously differentiable (C 1).

2 There exists a global minimizer u∗. (Typically, an optim algorithm
seeks for a local minimizer s.t. ∇J(u∗) = 0.)

Gradient descent approach

1 Initialize u0 ∈ E (often just randomly). Iterate (k = 0, 1, 2, ...) till
convergence (‖∇J(uk)‖ ≤ ε):

2 Choose a descent direction dk ∈ E s.t.
〈
∇J(uk), dk

〉
< 0 and a

step size τk > 0, ”Appropriately”.

3 Update uk+1 = uk + τkdk .
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Choice of descent direction dk and step size τ k

How to choose descent direction?

Scaled gradient: dk = −(Hk)−1∇J(uk), Hk spd (why?).
Examples: Steepest descent: Hk = I ; Newton (J is C 2): Hk = ∇2J(uk)

spd; Quasi-Newton: Hk ≈ ∇2J(uk) spd.

How to choose step size?

”Small enough”: (Thm) ensures J(uk + τdk) < J(uk) (decrease of J) so
long as

〈
∇J(uk), dk

〉
< 0.

Exact line search: find the best τk along the direction, often unrealistic!
Inexact line search: find a good enough τk that ensures convergence.

(A) Sufficient decrease condition (with c1 ∈ (0, 1))

(C) Curvature condition (with c2 ∈ (c1, 1))

(A)  Armijo line search; (A) & (C)  Wolfe-Powell l.s.

(Lemma) (A)+(C) is feasible; (Thm, Zoutendijk) ”converge easily”.
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Backtracking (inexact) line search: some details

Why the name ”backtracking”?

In practice, we start with a big estimate of τk and shrinks it until (A) +
(C) are satisfied.

Thm. Zoutendijk: a closer look3 . 1 . S T E P L E N G T H 35
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acceptable

Figure 3.5 Step lengths satisfying the Wolfe conditions.

It is not difficult to prove that there exist step lengths that satisfy the Wolfe conditions
for every function f that is smooth and bounded below.

Lemma 3.1.
Suppose that f : IRn → IR is continuously differentiable. Let pk be a descent direction at

xk , and assume that f is bounded below along the ray {xk + αpk |α > 0}. Then if 0 < c1 <

c2 < 1, there exist intervals of step lengths satisfying the Wolfe conditions (3.6) and the strong
Wolfe conditions (3.7).

PROOF. Note that φ(α) " f (xk + αpk) is bounded below for all α > 0. Since 0 < c1 < 1,
the line l(α) " f (xk) + αc1∇ f T

k pk is unbounded below and must therefore intersect the
graph of φ at least once. Let α′ > 0 be the smallest intersecting value of α, that is,

f (xk + α′ pk) " f (xk) + α′c1∇ f T
k pk . (3.8)

The sufficient decrease condition (3.6a) clearly holds for all step lengths less than α′.
By the mean value theorem (see (A.55)), there exists α′′ ∈ (0,α′) such that

f (xk + α′ pk) − f (xk) " α′∇ f (xk + α′′ pk)T pk . (3.9)

By combining (3.8) and (3.9), we obtain

∇ f (xk + α′′ pk)T pk " c1∇ f T
k pk > c2∇ f T

k pk, (3.10)

since c1 < c2 and ∇ f T
k pk < 0. Therefore, α′′ satisfies the Wolfe conditions (3.6), and the

inequalities hold strictly in both (3.6a) and (3.6b). Hence, by our smoothness assumption
on f , there is an interval around α′′ for which the Wolfe conditions hold. Moreover, since

(A) + (C) + J µ-Lipschitz diff.  

∞∑
k=0

cos(θk)2‖∇J(uk)‖2 <∞.

with
cos(θk) =

〈
∇J(uk), dk

〉
/(‖∇J(uk)‖‖dk‖)

Remark: − cos(θk) ≥ c > 0 =⇒ limk→∞ ‖∇J(uk)‖ = 0
i.e. good enough direction ensures convergence!
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Majorize-minimize algorithm

Main idea: iteratively minimize an easy
upper bound instead!

Majorant:Ĵ s.t. Ĵ(· ; u) is a pointwise
upper bound at u ∈ E:

1 Ĵ(u; u) = J(u) (coincide at u);
2 Ĵ(· ; u) ≥ J(·) (upper bound at u).

Algorithm: uk+1 ∈ arg minu Ĵ(u; uk).

Monotonic Decrease: J(uk+1) ≤ Ĵ(uk+1; uk) ≤ Ĵ(uk ; uk) = J(uk).

Gradient descent as majorize-minimize algorithm

Let J : E→ R is µ-Lipschitz diff., and τ ∈ (0, 1/µ]. Then we have:

Ĵ(u, uk) = J(uk) +
〈
∇J(uk), u − uk

〉
+

1

2τ
‖u − uk‖2 is a majorant.

uk+1 = arg minu Ĵ(u, uk) convergent GD: limk→∞∇J(uk) = 0.
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Proximal gradient (Forward-Backward Splitting)

Problem settings

min
u

F (u) + G (u),

where G is convex differentiable but F is only convex, proper, lsc.
Remark: gradient descent not applicable: F might not be differentiable.

Approach

Forward-backward splitting (FBS, or proximal gradient):

uk+1 = proxτF (uk − τ∇G (uk)) (1)

= (I + τ∂F )−1 ◦ (I − τ∇G )(uk). (2)

How to ensure convergence?
Regularity condition on F ,G and ”appropriate” choice of τ , see later :).
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