Convex Optimization for Machine Learning and Computer Vision

Lecture: Dr. Tao Wu Exercises: Yuesong Shen, Zhenzhang Ye

Winter Semester 2018/19

Computer Vision Group Institut für Informatik Technische Universität München

Weekly Exercises 0

Room: 01.09.014 Wednesday, 24.10.2018, 12:15 - 14:00

Intro to Sparse Matrices in MATLAB (or Python)

For Python users: you can submit the programming exercises in Python. However, the support for Python template and example solution is experimental and NOT GUARANTEED: if there is no available template, you will need to "translate" the Matlab template yourself; otherwise, the Python template (if there is any) will be in Python 3. We recommend you to use Matlab for exercises unless you have reason not to.

For now, we need the numpy, scipy, pillow, matplotlib packages. You can also use Jupyter notebook for nice visualization but it is not mandatory.

Throughout the course we will work in the finite dimensional setting, i.e. we discretely represent gray value images $f: \Omega \to \mathbb{R}$ or color images $f: \Omega \to \mathbb{R}^3$ as (vectorized) matrices $f \in \mathbb{R}^{m \times n}$ (vec $(f) \in \mathbb{R}^{mn}$) respectively $f \in \mathbb{R}^{m \times n \times 3}$ (vec $(f) \in \mathbb{R}^{3mn}$). To discretely express functionals like the total variation for smooth f

$$TV(f) := \int_{\Omega} \|\nabla f(x)\| \, \mathrm{d}x$$

you will therefore need a discrete gradient operator

$$\nabla := \begin{pmatrix} D_x \\ D_y \end{pmatrix}$$

for vectorized representations vec(f) of images $f \in \mathbb{R}^{m \times n}$ so that

$$TV(f) = \|\nabla \operatorname{vec}(f)\|_{2,1} = \sum_{i=1}^{nm} \sqrt{(D_x \cdot \operatorname{vec}(f))_i^2 + (D_y \cdot \operatorname{vec}(f))_i^2}.$$

The aim of this exercise is to derive the gradient operator and learn how to implement it with MATLAB (or Python).

Exercise 1 (0 Points). Let $f \in \mathbb{R}^{m \times n}$ be a discrete grayvalue image. Your task is to find matrices \tilde{D}_x and \tilde{D}_y for computing the forward differences f_x , f_y in x and

y-direction of the image f with Neumann boundary conditions so that:

$$f_x = f \cdot \tilde{D}_x := \begin{pmatrix} f_{12} - f_{11} & f_{13} - f_{12} & \dots & f_{1n} - f_{1(n-1)} & 0 \\ f_{22} - f_{21} & \dots & & & 0 \\ \vdots & & & \vdots & 0 \\ f_{m2} - f_{m1} & \dots & & f_{mn} - f_{m(n-1)} & 0 \end{pmatrix}$$
(1)

and

$$f_{y} = \tilde{D}_{y} \cdot f = \begin{pmatrix} f_{21} - f_{11} & f_{22} - f_{12} & \dots & f_{2n} - f_{1n} \\ f_{31} - f_{21} & \dots & f_{3n} - f_{2n} \\ \vdots & & \vdots & & \vdots \\ f_{m1} - f_{(m-1)1} & \dots & f_{mn} - f_{(m-1)n} \\ 0 & \dots & 0 & 0 \end{pmatrix}.$$
 (2)

Exercise 2 (0 Points). Implement the derivative operators from the previous exercise using MATLABs spdiags command. Load the image from the file Vegetation-028.jpg using the command imread and convert it to a grayvalue image using the command rgb2gray. Finally apply the operators to the image and display your results using imshow.

For Python: Use e.g. scipy.sparse.spdiags; Use pillow to read images as gray-value and take the data as numpy array; Use matplotlib to display your result.

For our algorithms it is more convenient to represent an image f as a vector $\text{vec}(f) \in \mathbb{R}^{mn}$, that means that the columns of f are stacked one over the other.

Exercise 3 (0 Points). Derive a gradient operator

$$\nabla = \begin{pmatrix} D_x \\ D_y \end{pmatrix}$$

for vectorized images so that

$$D_x \cdot \text{vec}(f) = \text{vec}(f_x)$$
 $D_y \cdot \text{vec}(f) = \text{vec}(f_y)$

You can use that it holds that for matrices A, X, B

$$AXB = C \iff (B^{\top} \otimes A)\operatorname{vec}(X) = \operatorname{vec}(C)$$

where \otimes denote the Kronecker (MATLAB: kron) product.

Experimentally verify that the results of Ex. 2 and Ex. 3 are equal by reshaping them to the same size using MATLABs reshape or the : operator, and showing that the norm of the difference of both results is zero.

Exercise 4 (0 Points). Assemble an operator ∇_c for computing the gradient (or more precisely the Jacobian) of a color image $f \in \mathbb{R}^{n \times m \times 3}$ using MATLABs cat and kron commands. (Python: check out scipy.sparse.{kron, hstack, vstack})

Exercise 5 (0 Points). Compute the color total variation given as

$$TV(f) = \|\nabla_c \text{vec}(f)\|_{F,1} = \sum_{i=1}^{nm} \left\| \begin{pmatrix} (D_x \cdot \text{vec}(f_r))_i & (D_x \cdot \text{vec}(f_g))_i & (D_x \cdot \text{vec}(f_b))_i \\ (D_y \cdot \text{vec}(f_r))_i & (D_y \cdot \text{vec}(f_g))_i & (D_y \cdot \text{vec}(f_b))_i \end{pmatrix} \right\|_{F}$$

of the two images Vegetation-028.jpg and Vegetation-043.jpg and compare the values. What do you observe? Why?