
Convex Optimization for Machine Learning and Computer Vision

Lecture: Dr. Tao Wu Computer Vision Group
Exercises: Yuesong Shen, Zhenzhang Ye Institut für Informatik
Winter Semester 2018/19 Technische Universität München

Weekly Exercises 0
Room: 01.09.014

Wednesday, 24.10.2018, 12:15 - 14:00

Intro to Sparse Matrices in MATLAB (or Python)
For Python users: you can submit the programming exercises in Python. However,
the support for Python template and example solution is experimental
and NOT GUARANTEED: if there is no available template, you will need to
“translate” the Matlab template yourself; otherwise, the Python template (if there
is any) will be in Python 3. We recommend you to use Matlab for exercises unless
you have reason not to.
For now, we need the numpy, scipy, pillow, matplotlib packages. You can also
use Jupyter notebook for nice visualization but it is not mandatory.

Throughout the course we will work in the finite dimensional setting, i.e. we
discretely represent gray value images f : Ω → R or color images f : Ω → R3 as
(vectorized) matrices f ∈ Rm×n (vec(f) ∈ Rmn) respectively f ∈ Rm×n×3 (vec(f) ∈
R3mn). To discretely express functionals like the total variation for smooth f

TV (f) :=

∫
Ω

‖∇f(x)‖ dx

you will therefore need a discrete gradient operator

∇ :=

(
Dx

Dy

)
for vectorized representations vec(f) of images f ∈ Rm×n so that

TV (f) = ‖∇vec(f)‖2,1 =
nm∑
i=1

√
(Dx · vec(f))2

i + (Dy · vec(f))2
i .

The aim of this exercise is to derive the gradient operator and learn how to implement
it with MATLAB (or Python).

Exercise 1 (0 Points). Let f ∈ Rm×n be a discrete grayvalue image. Your task is
to find matrices D̃x and D̃y for computing the forward differences fx, fy in x and

1



y-direction of the image f with Neumann boundary conditions so that:

fx = f · D̃x :=


f12 − f11 f13 − f12 . . . f1n − f1(n−1) 0
f22 − f21 . . . 0

...
... 0

fm2 − fm1 . . . fmn − fm(n−1) 0

 (1)

and

fy = D̃y · f =


f21 − f11 f22 − f12 . . . f2n − f1n

f31 − f21 . . . f3n − f2n
...

...
fm1 − f(m−1)1 . . . fmn − f(m−1)n

0 . . . 0 0

 . (2)

Exercise 2 (0 Points). Implement the derivative operators from the previous exer-
cise using MATLABs spdiags command. Load the image from the file Vegetation-028.jpg
using the command imread and convert it to a grayvalue image using the command
rgb2gray. Finally apply the operators to the image and display your results using
imshow.
For Python: Use e.g. scipy.sparse.spdiags; Use pillow to read images as gray-
value and take the data as numpy array; Use matplotlib to display your result.

For our algorithms it is more convenient to represent an image f as a vector
vec(f) ∈ Rmn, that means that the columns of f are stacked one over the other.

Exercise 3 (0 Points). Derive a gradient operator

∇ =

(
Dx

Dy

)
for vectorized images so that

Dx · vec(f) = vec(fx) Dy · vec(f) = vec(fy)

You can use that it holds that for matrices A,X,B

AXB = C ⇐⇒ (B> ⊗ A)vec(X) = vec(C)

where ⊗ denote the Kronecker (MATLAB: kron) product.
Experimentally verify that the results of Ex. 2 and Ex. 3 are equal by reshaping

them to the same size using MATLABs reshape or the : operator, and showing
that the norm of the difference of both results is zero.

Exercise 4 (0 Points). Assemble an operator ∇c for computing the gradient (or
more precisely the Jacobian) of a color image f ∈ Rn×m×3 using MATLABs cat and
kron commands. (Python: check out scipy.sparse.{kron, hstack, vstack})

2



Exercise 5 (0 Points). Compute the color total variation given as

TV (f) = ‖∇cvec(f)‖F,1 =
nm∑
i=1

∥∥∥∥((Dx · vec(fr))i (Dx · vec(fg))i (Dx · vec(fb))i
(Dy · vec(fr))i (Dy · vec(fg))i (Dy · vec(fb))i

)∥∥∥∥
F

of the two images Vegetation-028.jpg and Vegetation-043.jpg and compare the
values. What do you observe? Why?

3


