Convex Optimization for Machine Learning and Computer Vision

Lecture: Dr. Tao Wu Exercises: Yuesong Shen, Zhenzhang Ye Winter Semester 2018/19 Computer Vision Group Institut für Informatik Technische Universität München

Weekly Exercises 1

Room: 01.09.014 Wednesday, 31.10.2018, 12:15-14:00

Submission deadline: Monday, 29.10.2018, 16:15, Room 01.09.014

Theory: Convex Sets

(12+8 Points)

Exercise 1 (4 Points). Let C be a family of convex sets in \mathbb{R}^n , $C_1, C_2 \in C$, $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$, $\lambda \in \mathbb{R}$. Prove convexity of the following sets:

- $\bigcap_{C \in \mathcal{C}} C$
- $P := \{x \in \mathbb{R}^n : Ax \le b\}$
- $C_1 + C_2 := \{x + y : x \in C_1, y \in C_2\}$ (the Minkowski sum of C_1 and C_2)
- $\lambda C_1 := \{\lambda x : x \in C_1\}$ (the λ -dilatation of C_1).

Exercise 2 (4 Points). Prove that if the set $C \subset \mathbb{R}^n$ is convex, then $\sum_{i=1}^N \lambda_i x_i \in C$ with $x_1, x_2, \ldots, x_N \in C$ and $0 \leq \lambda_1, \lambda_2, \ldots, \lambda_N \in \mathbb{R}, \sum_{i=1}^N \lambda_i = 1$.

Hint: Use induction to prove.

Exercise 3 (4 Points). Let $\emptyset \neq X \subset \mathbb{R}^n$. Prove the equivalence of the following statements:

- X is closed.
- Every convergent sequence $\{x_n\}_{n\in\mathbb{N}}\subset X$ attains its limit in X.

Exercise 4 (8 Points). Some basic problems on calculus and linear algebra.

- Let $u \in \mathbb{R}^n$, compute the gradient of following function on u: $J(u) = \sqrt{u^{\top}Au}$, where $A \in n \times n$ is full rank and $u \neq 0$.
- What happens if A is not full rank?
- Let $z \in \mathbb{R}^n$ and $\epsilon > 0$, compute the gradient of following function on z:

$$R(z) = \frac{z}{f^2} \sqrt{f^2 \left\|\nabla z\right\|^2 + (-z - \langle x, \nabla z \rangle)^2 + \epsilon}$$