Lecture: Dr. Tao Wu
Exercises: Yuesong Shen, Zhenzhang Ye
Winter Semester 2018/19

Computer Vision Group
Institut für Informatik
Technische Universität München

Weekly Exercises 3

Room: 01.09.014
Wednesday, 14.11.2018, 12:15-14:00
Submission deadline: Monday, 12.11.2018, 16:15, Room 01.09.014

Subdifferential

Exercise 1 (4 Points). Let the convex function $J: \mathbb{R}^{n} \rightarrow \mathbb{R} \cup\{\infty\}$ be differentiable at $u \in \operatorname{int}(\operatorname{dom}(J))$. Show that

$$
\partial J(u)=\{\nabla J(u)\} .
$$

Hint: Use the definition of the subdifferential and the directional derivative. For J being differentiable at the interior of its domain, some direction $v \in \mathbb{R}^{n}$ and some point $u \in \operatorname{int}(\operatorname{dom}(J))$ the directional derivative $\partial_{v} J$ of J is given as

$$
\partial_{v} J(u):=\lim _{\epsilon \rightarrow 0} \frac{J(u+\epsilon v)-J(u)}{\epsilon}=\lim _{\epsilon \rightarrow 0} \frac{J(u)-J(u-\epsilon v)}{\epsilon}=\langle\nabla J(u), v\rangle .
$$

Exercise 2 (6 Points). Compute the subdifferential of norms in Euclidean space:

- Let $\|\cdot\|$ be a norm on an Euclidean space \mathbb{E}, and $\|\cdot\|_{*}$ its dual norm defined as

$$
\|p\|_{*}=\sup _{\|x\| \leq 1}\langle p, x\rangle,
$$

prove that

$$
\begin{equation*}
\partial\|\cdot\|(x)=\left\{p \in \mathbb{E}:\langle p, x\rangle=\|x\|,\|p\|_{*} \leq 1\right\} . \tag{1}
\end{equation*}
$$

Hint: For $x \neq 0$, we have a generalized Cauchy-Schwarz inequality:

$$
\begin{equation*}
\langle x, y\rangle=\|x\|\left\langle\frac{x}{\|x\|}, y\right\rangle \leq\|x\| \cdot \sup _{\|z\| \leq 1}\langle z, y\rangle=\|x\|\|y\|_{*}, \forall x, y \in \mathbb{E} . \tag{2}
\end{equation*}
$$

- Using the result above, compute the subdifferential of the following functions:

$$
\begin{aligned}
& -J: \mathbb{R}^{n} \rightarrow \mathbb{R}, J(u)=\|u\|_{1} \\
& -J: \mathbb{R}^{n} \rightarrow \mathbb{R}, J(u)=\|u\|_{2} \\
& -J: \mathbb{R}^{n} \rightarrow \mathbb{R}, J(u)=\|u\|_{\infty}
\end{aligned}
$$

Exercise 3 (4 points). Given $b \in \mathbb{R}^{m}, A \in \mathbb{R}^{m \times n}$ with linearly independent rows, show that the normal cone N_{C} of the linear-inequality constraints

$$
\begin{equation*}
C=\left\{u \in \mathbb{R}^{n}: A u \leq b,\right\} \tag{3}
\end{equation*}
$$

is

$$
\begin{equation*}
N_{C}(u)=\left\{A^{\top} \lambda: \lambda \geq 0, \lambda_{i}=0 \text { if }(A u-b)_{i}<0\right\} . \tag{4}
\end{equation*}
$$

Exercise 4 (6 points). Compute the subdifferential of nuclear norm:

$$
X \in \mathbb{R}^{n \times n} \mapsto\|X\|_{\text {nuclear }}=\sum_{i} \sigma_{i}(X),
$$

i.e., sum of singular values.

Hint: Show that the subdifferential at point $X \in \mathbb{R}^{n \times n}$ with $s \geq 0$ zero singular values is given as

$$
\begin{equation*}
\partial\|\cdot\|_{\text {nuc }}(X)=\left\{U_{1} V_{1}^{\top}+U_{2} M V_{2}^{\top}: M \in \mathbb{R}^{s \times s},\|M\|_{\text {spec }} \leq 1\right\} \tag{5}
\end{equation*}
$$

where $U=\left[\begin{array}{ll}U_{1} & U_{2}\end{array}\right]$ and $V=\left[\begin{array}{ll}V_{1} & V_{2}\end{array}\right]$ are given by the singular value decomposition of $X=U \Sigma V^{\top}$, with U_{1} and V_{1} having $n-s$ columns. Furthermore $\|\cdot\|_{\text {spec }}$ denotes the spectral norm, i.e., the largest singular value.

