Convex Optimization for Machine Learning and Computer Vision

Lecture: Dr. Tao Wu
Exercises: Yuesong Shen, Zhenzhang Ye
Winter Semester 2018/19

Computer Vision Group
Institut für Informatik
Technische Universität München

Weekly Exercises 8

Room: 01.09.014
Wednesday, 19.12.2018, 12:15-14:00
Submission deadline: Monday, 17.12.2018, 16:15, Room 01.09.014

Prox and Gradient descent

(8+4 Points)
Exercise 1 (6 Points). Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be continuously differentiable and bounded from below. Consider the scaled gradient descent iteration:

$$
\begin{equation*}
x^{k+1}=x^{k}-\tau^{k}\left(H^{k}\right)^{-1} \nabla f\left(x^{k}\right) \tag{1}
\end{equation*}
$$

For each k, assume that $\tau^{k}>0, \nabla f\left(x^{k}\right) \neq 0$, and $H^{k} \in \mathbb{R}^{n \times n}$ is symmetric positive definite.

1. Prove that for given x^{k} and H^{k}, there exists some $\bar{\tau}^{k}>0$ such that any $\tau^{k} \in\left(0, \bar{\tau}^{k}\right]$ will fulfill the following Armijo condition:

$$
\begin{equation*}
f\left(x^{k+1}\left(\tau^{k}\right)\right) \leq f\left(x^{k}\right)+c\left\langle\nabla f\left(x^{k}\right), x^{k+1}\left(\tau^{k}\right)-x^{k}\right\rangle \tag{2}
\end{equation*}
$$

for some constant $0<c<1$.
2. Assume that for each k the condition (2) is satisfied with some chosen $\tau^{k}>0$. In addition, assume that $\liminf _{k \rightarrow \infty} \tau^{k}=C_{1}>0$ and $\lim \sup _{k \rightarrow \infty} \lambda_{\max }\left(H^{k}\right)=$ $C_{2}<\infty$. Prove $\lim _{k \rightarrow \infty} \nabla f\left(x^{k}\right)=0$.

Exercise 2 (6 points). We want to show that the proximal operator of the nuclear norm is the proximal operator of the ℓ_{1}-norm applied to the singular values of the input argument. Formally, let $Y \in \mathbb{R}^{n \times n}$ and let $Y=U \Sigma V^{\top}$ be the singular value decomposition of Y. Our goal is to prove that

$$
\operatorname{prox}_{\tau\|\cdot\|_{\text {nuc }}}(Y)=U \operatorname{diag}\left(\left\{\left(\sigma_{i}-\tau\right)_{+}\right\}\right) V^{\top},
$$

where $\operatorname{diag}\left(\left\{\sigma_{i}-\tau\right\}_{+}\right):=\operatorname{diag}\left(\left\{\max \left\{0, \sigma_{i}-\tau\right\}\right\}\right)=\operatorname{prox}_{\tau\|\cdot\|_{1}}\left(\left\{\sigma_{i}\right\}\right)$ is the shrinkage (or soft thresholding) operator applied to the singular values σ_{i} of Y.

For this, we will argue in 2 steps:

1. In general, the proximal operator is well-defined and returns a unique minimizer, why? Give your argument. In our case, denote $\hat{X}=\operatorname{prox}_{\tau\|\cdot\|_{\text {nuc }}}(Y)$, what do we have for the optimality condition?
2. Show that $\hat{X}=U \operatorname{diag}\left(\left\{\left(\sigma_{i}-\tau\right)_{+}\right\}\right) V^{\top}$ verifies the optimality condition, and argue that this concludes our proof.

Hint: for step 2, recall from sheet 3 that the subdifferential at point $X \in \mathbb{R}^{n \times n}$ with $s \geq 0$ zero singular values is given as

$$
\begin{equation*}
\partial\|\cdot\|_{\mathrm{nuc}}(X)=\left\{U_{1} V_{1}^{\top}+U_{2} M V_{2}^{\top}: M \in \mathbb{R}^{s \times s},\|M\|_{\text {spec }} \leq 1\right\} \tag{3}
\end{equation*}
$$

where $\|\cdot\|_{\text {spec }}$ denotes the spectral norm, i.e., the largest singular value.
Rewriting the expressions of X and Y with an appropriately defined decomposition $V=\left[\begin{array}{ll}V_{1} & V_{2}\end{array}\right], U=\left[\begin{array}{ll}U_{1} & U_{2}\end{array}\right]$ can be helpful.

