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Theory: PDHG and ADMM (8+4 Points)
Exercise 1 (6 Points). Let S ∈ Rm×m, T ∈ Rn×n be 2 spd matrices and K ∈ Rn×m,
show that

M =

[
S −K>
−K T

]
is spd ⇔ S −K>T−1K is spd . (1)

Hint: Consider the Schur complement of M and prove that a block diagonal matrix
is spd if and only if all of its diagonal blocks are spd.

Exercise 2 (6 Points). (ADMM update derivation for Robust PCA): we consider the
following optimization problem (the programming exercise below gives the context):

argminA∈Rn1×n2

B∈Rn1×n2

M∈Rn1×n2

‖A‖nuc + λ ‖B‖1 + δ{‖M − Z‖fro ≤ ε}+ δ{A+B −M = 0} (2)

where Z ∈ Rn1×n2 is a given matrix, ‖‖fro is the Frobenius norm, ‖‖nuc is the nuclear
norm and δ{} is the indicator function.

The M here can be considered as a replacement variable and we introduce the
Lagrangian multiplier Y to construct the augmented Lagrangian:

L(A,B,M, Y ) = ‖A‖nuc+λ ‖B‖1+δ{‖M − Z‖fro ≤ ε}+〈Y,A+B−M〉+ρ
2
‖A+B −M‖2fro

(3)
You are asked to write down the ADMM updates to solve above augmented La-
grangian function on A,B,M, Y .

Hint: This is a more general form than what we see in the lecture. Nevertheless,
you can write down the iterative updates for A,B,M, Y sequentially similar to the
one in the lecture.
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Programming: Robust Principal Component Analy-
sis(Due date: 07.01.2019) (12 Points)
Exercise 3 (12 Points). Given several frames from a video, your task is to separate
the foreground and background by solving an optimization problem: Assume that
each frame is an image with m × n pixels and this video has n2 number of frames.
By vectorizing each frame, we can create a matrix Z ∈ Rn1×n2 , where n1 = m× n.

Inspired by the idea of PCA, we want to decompose the original matrix Z into
two matrices A and B with the same dimension. The matrix A should contain
the information of background pixels while B should contain the information of
foreground ones. We hope that A+B will recover the original video Z, i.e. A+B =
Z. However, considering the noise in Z, an intermediate matrix M := A + B is
introduced. Instead of recovering the exact Z, we relax the constrain by requiring
‖M − Z‖fro ≤ ε, where ε is a predefined variable controlling the trade-off between
the fidelity of the decomposition and the robustness to the noise.

Therefore, we could construct the following optimization problem:

argminA∈Rn1×n2

B∈Rn1×n2

M∈Rn1×n2

‖A‖nuc + λ ‖B‖1 + δ{‖M − Z‖fro ≤ ε}+ δ{A+B −M = 0} (4)

where ‖‖fro is the Frobenius norm, ‖‖nuc is the nuclear norm and δ{} is the indicator
function.

Since A contains background of each frame and the background keeps the same,
A should be a low-rank matrix. Therefore, the nuclear norm is used to constraint
A to be a low-rank matrix. The l1 norm of B requires B to be sparse.

You are asked to apply ADMM to solve this energy function. The M here can
be considered as a replacement variable and we introduce the Lagrangian multiplier
Y to construct the augmented Lagrangian:

L(A,B,M, Y ) = ‖A‖nuc+λ ‖B‖1+δ{‖M − Z‖fro ≤ ε}+〈Y,A+B−M〉+ρ
2
‖A+B −M‖2fro

(5)
Then use ADMM to solve:

argminA,B,M,Y L(A,B,M, Y ) (6)
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