Lecture: Dr. Tao Wu
Exercises: Yuesong Shen, Zhenzhang Ye
Winter Semester 2018/19

Computer Vision Group
Institut für Informatik
Technische Universität München

Weekly Exercises 9

Room: 01.09.014
Wednesday, 09.01.2019, 12:15-14:00
Submission deadline: Monday, 07.01.2019, 16:15, Room 01.09.014

Theory: PDHG and ADMM

(8+4 Points)
Exercise 1 (6 Points). Let $S \in \mathbb{R}^{m \times m}, T \in \mathbb{R}^{n \times n}$ be 2 spd matrices and $K \in \mathbb{R}^{n \times m}$, show that

$$
M=\left[\begin{array}{cc}
S & -K^{\top} \tag{1}\\
-K & T
\end{array}\right] \text { is } \operatorname{spd} \Leftrightarrow S-K^{\top} T^{-1} K \text { is } \operatorname{spd}
$$

Hint: Consider the Schur complement of M and prove that a block diagonal matrix is spd if and only if all of its diagonal blocks are spd.

Exercise 2 (6 Points). (ADMM update derivation for Robust PCA): we consider the following optimization problem (the programming exercise below gives the context):

$$
\begin{equation*}
\operatorname{argmin}_{\substack{A \in \mathbb{R}^{n_{1} \times n_{2}} \\ B \in \mathbb{R}_{1} \times n_{2} \\ M \in \mathbb{R}_{1} \times n_{2}}}\|A\|_{\text {nuc }}+\lambda\|B\|_{1}+\delta\left\{\|M-Z\|_{\text {fro }} \leq \epsilon\right\}+\delta\{A+B-M=0\} \tag{2}
\end{equation*}
$$

where $Z \in \mathbb{R}^{n_{1} \times n_{2}}$ is a given matrix, $\left\|\|_{\text {fro }}\right.$ is the Frobenius norm, $\| \|_{\text {nuc }}$ is the nuclear norm and $\delta\}$ is the indicator function.

The M here can be considered as a replacement variable and we introduce the Lagrangian multiplier Y to construct the augmented Lagrangian:
$\mathcal{L}(A, B, M, Y)=\|A\|_{\text {nuc }}+\lambda\|B\|_{1}+\delta\left\{\|M-Z\|_{\text {fro }} \leq \epsilon\right\}+\langle Y, A+B-M\rangle+\frac{\rho}{2}\|A+B-M\|_{\text {fro }}^{2}$
You are asked to write down the ADMM updates to solve above augmented Lagrangian function on A, B, M, Y.

Hint: This is a more general form than what we see in the lecture. Nevertheless, you can write down the iterative updates for A, B, M, Y sequentially similar to the one in the lecture.

Programming: Robust Principal Component Analysis(Due date: 07.01.2019) (12 Points)

Exercise 3 (12 Points). Given several frames from a video, your task is to separate the foreground and background by solving an optimization problem: Assume that each frame is an image with $m \times n$ pixels and this video has n_{2} number of frames. By vectorizing each frame, we can create a matrix $Z \in \mathbb{R}^{n_{1} \times n_{2}}$, where $n_{1}=m \times n$.

Inspired by the idea of PCA, we want to decompose the original matrix Z into two matrices A and B with the same dimension. The matrix A should contain the information of background pixels while B should contain the information of foreground ones. We hope that $A+B$ will recover the original video Z, i.e. $A+B=$ Z. However, considering the noise in Z, an intermediate matrix $M:=A+B$ is introduced. Instead of recovering the exact Z, we relax the constrain by requiring $\|M-Z\|_{\text {fro }} \leq \epsilon$, where ϵ is a predefined variable controlling the trade-off between the fidelity of the decomposition and the robustness to the noise.

Therefore, we could construct the following optimization problem:

$$
\begin{equation*}
\operatorname{argmin}_{\substack{A \in \mathbb{R}^{n_{1} \times n_{2}} \\ B \in \mathbb{R}_{2} n_{2} \times n_{2} \\ M \in \mathbb{R}_{1} \times n_{2}}}\|A\|_{\text {nuc }}+\lambda\|B\|_{1}+\delta\left\{\|M-Z\|_{\text {fro }} \leq \epsilon\right\}+\delta\{A+B-M=0\} \tag{4}
\end{equation*}
$$

where $\left\|\|_{\text {fro }}\right.$ is the Frobenius norm, $\| \|_{\text {nuc }}$ is the nuclear norm and $\delta\}$ is the indicator function.

Since A contains background of each frame and the background keeps the same, A should be a low-rank matrix. Therefore, the nuclear norm is used to constraint A to be a low-rank matrix. The l_{1} norm of B requires B to be sparse.

You are asked to apply ADMM to solve this energy function. The M here can be considered as a replacement variable and we introduce the Lagrangian multiplier Y to construct the augmented Lagrangian:
$\mathcal{L}(A, B, M, Y)=\|A\|_{\text {nuc }}+\lambda\|B\|_{1}+\delta\left\{\|M-Z\|_{\text {fro }} \leq \epsilon\right\}+\langle Y, A+B-M\rangle+\frac{\rho}{2}\|A+B-M\|_{\text {fro }}^{2}$
Then use ADMM to solve:

$$
\begin{equation*}
\operatorname{argmin}_{A, B, M, Y} \mathcal{L}(A, B, M, Y) \tag{6}
\end{equation*}
$$

