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Theory: Proximal algorithms (8+4 Points)
Exercise 1 (6 points). (Variant of Douglas-Rachford splitting) Let F,G : E → R̄
be 2 convex, proper and lower semi continuous (l.s.c.) functions. We consider the
following updates for solving minu F (u) +G(u):uk+1 = argminuG(u) +

ε

2
‖u− uk‖2 +

1

2τ
‖u− vk‖2,

vk+1 = vk − uk+1 + proxτF (2uk+1 − vk).
(1)

Reformulate Eq. 1 as a customized proximal iteration.

Solution. Denote pk := (uk − vk)/τ . We have that:

uk+1 = argminuG(u) +
ε

2
‖u− uk‖2 +

1

2τ
‖u− vk‖2 (2)

= argminuG(u) +
1 + ετ

2τ
‖u− vk + ετuk

1 + ετ
‖2 (3)

= argminuG(u) +
1 + ετ

2τ
‖u− (uk − τ

1 + ετ
pk)‖2 (4)

= proxτ/1+ετG(uk − τ

1 + ετ
pk). (5)

Thus

uk − τ

1 + ετ
pk ∈ (I +

τ

1 + ετ
∂G)(uk+1), (6)

0 ∈ (
1

τ
+ ε)(uk+1 − uk) + pk + ∂G(uk+1). (7)

From the slides we have that

vk+1 = vk − uk+1 + proxτF (2uk+1 − vk) (8)
⇐⇒0 ∈ τ(pk+1 − pk) + ∂F ∗(pk+1)− (2uk+1 − uk). (9)

Therefore Eq. 1 can be reformulated as the following customized proximal iteration:

0 ∈
[
( 1
τ

+ ε)I −I
−I τI

] [
uk+1 − uk
pk+1 − pk

]
+

[
∂G I
−I ∂F ∗

] [
uk+1

pk+1

]
(10)
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Exercise 2 (6 points). (PDHG derivation for optical flow estimation) Consider the
optimization problem given by Eq. 38 in this week’s programming assignment: it
has the form f(U) + g(KU) where

f : U 7→
mn∑
i=1

λ|〈(DĨ1)i, (U − Ū)i〉+ (Ĩ1 − I0)i|, (11)

g : V 7→ ‖V ‖1,2 =
2mn∑
i=1

‖Vi‖2, (12)

K = ∇. (13)

Write down the PDHG updates for this problem.

Solution.
The convex conjugate of g is

g∗ : P 7→ δC(P ) (14)

where C = {P ∈ R2mn×2|∀1 ≤ i ≤ 2mn, ‖Pi‖2 ≤ 1}
Thus Eq. 38 can be written as the following saddle-point problem:

min
U

sup
P
f(U) + 〈P,KU〉 − g∗(P ) (15)

with 〈A,B〉 = tr(AB>). PDHG then performs the following updates:

Uk+1 = argminU f(U) + 〈K>P k, U〉+
s

2
‖U − Uk‖2F (16)

PK+1 = argminP −〈P,K(2Uk+1 − Uk)〉+ g∗(P ) +
t

2
‖P − P k‖2F (17)

where ‖ · ‖F denotes the Frobenius norm.
Eq. 17 gives the projected gradient descent:

PK+1 = projC
(
P k +

1

t
K(2Uk+1 − Uk)

)
(18)

with the projection being done row-wise onto unit ball (w.r.t. l2 norm) in R2.
Eq. 16 can be decomposed row-wise such that for any 1 ≤ i ≤ mn we have

Uk+1
i = argminUi λ|〈(DĨ1)i, (Ui−Ūi)〉+(Ĩ1−I0)i|+〈(K>P k)i, Ui〉+

s

2
‖Ui−Uk

i ‖22. (19)

To lighten the notation, we define the following constants:

αi = (DĨ1)i ∈ R2 (20)
βi = (K>P k)i ∈ R2 (21)

ci = (Ĩ1 − I0)i − 〈(DĨ1)i, Ūi〉 ∈ R (22)
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so that
Uk+1
i = argminUi λ|〈αi, Ui〉+ ci|+ 〈βi, Ui〉+

s

2
‖Ui − Uk

i ‖22. (23)

which results in the following optimality condition:

0 ∈ λ∂| · |(〈αi, Uk+1
i 〉+ ci) · αi + βi + s(Uk+1

i − Uk
i ). (24)

Here ∂| · |(〈αi, Uk+1
i 〉+ ci) denote the sub-differential of the absolute value function

at point 〈αi, Uk+1
i 〉+ ci ∈ R. We have thus

∂| · |(〈αi, Uk+1
i 〉+ ci) =


1 if 〈αi, Uk+1

i 〉+ ci > 0

[−1, 1]i if 〈αi, Uk+1
i 〉+ ci = 0

−1 if 〈αi, Uk+1
i 〉+ ci < 0

(25)

We consider the 3 cases:

• when 〈αi, Uk+1
i 〉+ ci > 0, we have

0 = λαi + βi + s(Uk+1
i − Uk

i ). (26)

thus
Uk+1
i = Uk

i −
1

s
βi −

λ

s
αi. (27)

in which case
〈αi, Uk

i −
1

s
βi〉+ ci >

λ

s
‖αi‖22 (28)

• when 〈αi, Uk+1
i 〉+ ci < 0, we have

0 = −λαi + βi + s(Uk+1
i − Uk

i ). (29)

thus
Uk+1
i = Uk

i −
1

s
βi +

λ

s
αi. (30)

in which case
〈αi, Uk

i −
1

s
βi〉+ ci < −

λ

s
‖αi‖22 (31)

• when 〈αi, Uk+1
i 〉+ ci = 0, we have

Uk+1
i ∈ {Uk

i −
1

s
βi + µ

λ

s
αi | µ ∈ [−1, 1]}. (32)

in which case
〈αi, Uk

i −
1

s
βi〉+ ci = −µλ

s
‖αi‖22 (33)
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Based on the case-by-case derivation above, if we denote

ρi(U) =

{(
〈αi, U − 1

s
βi〉+ ci

)
/
(
λ
s
‖αi‖22

)
if αi 6= 0

0 if αi = 0
(34)

we can get

Uk+1
i = Uk

i −
1

s
βi −

λ

s
·


αi if ρi(Uk

i ) > 1

ρi(U
k
i )αi if |ρi(Uk

i )| < 1

−αi if ρi(Uk
i ) < −1

(35)

which leads to a row-wise thresholding during update.
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Programming: Optical flow estimation (Due date:
28.01.2019) (12 Points)
Exercise 3 (12 Points). In this exercise, we ask you to write a program in MATLAB
(or Python) that solves the following inner problem for the optical flow estimation:

min
U∈Rmn×2

λ
mn∑
i=1

|〈(DĨ1)i, (U − Ū)i〉+ (Ĩ1 − I0)i|+ ‖∇U‖1,2 (36)

where Ū = (Ūx Ūy) denotes the initial estimate of the displacement field (along x
and y directions), I0 the reference image and Ĩ1 the warped image of I1 (which is the
the image after motion) according to the displacement field Ū , DĨ1 = (DxĨ1 Dy Ĩ1),
∇ = (D>x D

>
y )>, The suffix i denote the i−th row, and ‖ ·‖1,2 denotes the matrix l1,2

norm (i.e. summation of l2−norm of each row). Our aim is to find a displacement
field U = (Ux Uy) that minimizes the objective function (Eq. 38) composed of a
linearized data fidelity term and a total-variation regularization term.
You are asked to solve this problem using PDHG.

Hint 1 : check out exercise 0 to see how to construct Dx, Dy,∇ etc.
Hint 2 : in our case ‖∇‖2spec = 8 (optionally you can verify this by hand or nu-

merically using normest in MATLAB or scipy.sparse.linalg.svds in Python),
so you could choose e.g. s = t = 3 so that s × t ≥ ‖∇‖2spec. This is a necessary
condition to ensure convergence of PDHG (why?).

(Reading this part is optional) To help you understand the context, we briefly
summarize the whole procedure:
We are given 2 images i0(x, y), i1(x, y) of a scene between which some motion took
place. We wish to estimate the motion by evaluating a displacement field u(x, y) =
(ux(x, y), uy(x, y)) such that the warped image ĩ1(x, y) = i1(x+ux(x, y), y+uy(x, y))
matches the reference image i0. We do so by minimizing the following objective:∫

λ|i1(x+ ux, y + uy)− i0(x, y)|+ ‖∇u(x, y)‖2 dxdy (37)

Linearization of i1 at (x+ ūx, y + ūy) gives∫
λ|i1(x+ūx, y+ūy)+〈(ux−ūx, uy−ūy)>,∇i1(x+ūx, y+ūy)〉−i0(x, y)|+‖∇u(x, y)‖2 dxdy

(38)
which is convex in u and can be rewritten as Eq. 38.

In practice, we evaluate U in a coarse-to-fine multi-scale manner where the result
at coarser scale serve as an initialization for the optimization at finer scale. Also,
for each scale, multiple linearized update steps are performed. These outer loops
are given in the template and you only need to focus on solving the inner problem.
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Figure 1: Illustration of optical flow color encoding.

Figure 2: Color encoding of the ground-truth optical flow in the ideal case.
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