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Theory: Convex Functions (10+8 Points)
Exercise 1 (4 Points). Let J : E → R̄ be proper. Prove the equivalence of the
following statements:

• J is lower semi-continuous (l.s.c).

• The epigraph of J is closed.

Solution. "⇒": Assume J is l.s.c, we want to show the epigraph is closed. Accord-
ing to the exercise in sheet 1, we only need to show all the sequences attains their
limit points inside the epigraph.
For any sequence (un, αn) in epi J converging to certain (u∗, α∗), we show that
(u∗, α∗) is in epi J as well. Using the definition of l.s.c, we have :

J(u∗) = lim inf
u→u∗

J(u)

≤ lim inf
n→∞

J(un)

≤ lim inf
n→∞

αn

= α∗.

where the first inequality comes from the definition of lim inf and the second one
due to (un, αn) in epi J . Therefore, (u∗, α∗) is in epi J as well.
"⇐": Assume J is not l.s.c, we try to construct a sequence in epi J but attains its
limit points not in epi J .
Since J is not l.s.c, we have:

∃u ∈ dom J, ∃{un}n∈N → u, s.t. J(u) > lim inf
n→∞

J(un) (1)

Therefore, we can find a N and ε > 0, such that ∀n ≥ N , J(u) − ε ≥ J(un). This
states that we find a sequence (un, J(u)− ε) which are in epi J . But its limitation
(u, J(u)− ε) is not in epi J .

Exercise 2 (4 Points). Suppose J : E→ R is convex with domJ = Rn, and bouned
above on Rn. Show that J is a constant function.
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Solution. Assume that J is not a constant function, we then can pick u 6= v such
that J(u) > J(v). According to the convexity of J , we have:

J(u) ≤ αJ(
u− (1− α)v

α
) + (1− α)J(v), ∀α ∈ (0, 1)

Dividing α on both sides:

J(u)− (1− α)J(v)

α
≤ J(

u− (1− α)v

α
)

⇒J(u)− J(v)

α
+ J(v) ≤ J(

u− (1− α)v

α
)

Since J(u) > J(v), when α→ 0, left side goes to +∞. Therefore, J is not bounded
above. It is shown by contradiction.

Exercise 3 (6 Points). Show that the following functions J : E→ R are convex:

• J(u) = ‖u‖, for any norm ‖·‖ over a normed vector space.

• J(u) = F (Ku), for convex F : Rn → R and linear K : Rm → Rn.

• J(u) = max{J1(u), J2(u)}, where J1 and J2 are convex functions with E→ R.

Solution.

• Take u, v ∈ Rn, λ ∈ [0, 1]:

J(λu+ (1− λ)v) = ‖λu+ (1− λ)v‖ ≤
‖λu‖+ ‖(1− λ)v‖ = λ ‖u‖+ (1− λ) ‖v‖ .

(2)

• Take u, v ∈ dom J , λ ∈ [0, 1].

J(λu+ (1− λ)v) := F (K(λu+ (1− λ)v) =

F (λKu+ (1− λ)Kv)) ≤
λF (Ku) + (1− λ)F (Kv) = λJ(u) + (1− λ)J(v)︸ ︷︷ ︸

<∞, since u,v∈dom J

(3)

This shows that J is convex on its domain and dom J is a convex set.

• It is easy to see that dom J = dom J1∩dom J2. Intersection of two convex
sets are still convex.
Then take u, v ∈ dom J, λ ∈ [0, 1]. Without loss of generality, we assume
J1 ≥ J2 at λu+ (1− λ)v:

J(λu+ (1− λ)v) = max{J1(λu+ (1− λ)v), J2(λu+ (1− λ)v)}
= J1(λu+ (1− λ)v)

≤ λJ1(u) + (1− λ)J1(v)

≤ λmax{J1(u), J2(u)}+ (1− λ) max{J1(v), J2(v)}

(4)
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Exercise 4 (4 Points). Let U ⊂ E open and convex and let J : U → R be twice
continuously differentiable. Prove the equivalence of the following statements:

• J is convex.

• For all u ∈ U the Hessian∇2J(u) is positive semidefinite (∀ v ∈ E : v>∇2J(u)v ≥
0).

Hints: You can use that for u, v ∈ U it holds that J is convex iff

(v − u)>∇J(u) ≤ J(v)− J(u).

Further recall that there are two variants of the Taylor expansion:

J(u+ td) = J(u) + td>∇J(u) +
t2

2
d>∇2J(u)d+ o(t2)

with limt→0
o(t2)
t2

= 0 and

J(u+ d) = J(u) + d>∇J(u) +
1

2
d>∇2J(u+ td)d

for appropriate t ∈ (0, 1).

Solution. Let J be convex, u ∈ U and d ∈ Rn. Since U is open there exists τ > 0
s.t. for all t ∈ (0, τ ] we have that u + td ∈ U . Using the Taylor expansion given in
the hint we obtain

0
Hint
≤ J(u+ td)− J(u)− td>∇J(u) =

t2

2
d>∇2J(u)d+ o(t2)

Multiplying both sides with 2
t2

yields

0 ≤ d>∇2J(u)d+ 2
o(t2)

t2︸ ︷︷ ︸
→0

.

Let conversely ∇2J(z) be positive semidefinite for all z ∈ U and let u, v ∈ U . Using
the Taylor expansion we have

J(v) = J(u+(v−u)) = J(u)+(v−u)>∇J(u)+
1

2
(v − u)>∇2J(u+ t(v − u))(v − u)︸ ︷︷ ︸

≥0 by assumption.

for certain t ∈ (0, 1) and therefore

J(v)− J(u) ≥ (v − u)>∇J(u),

which means that J is convex.
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Programming: Inpainting(Due date: 12.11) (12 Points)
Exercise 5 (12 Points). Write a program in MATLAB (or Python) that solves the
inpainting problem for the vegetable image:

min
u∈Rn×m

∑
i,j

(ui,j − ui−1,j)2 + (ui,j − ui,j−1)2 s.t. ui,j = fi,j ∀(i, j) ∈ I,

with index set I of pixels to keep. Those can be identified as the white pixels of the
mask image.
Hint: The constrained optimization problem can be reformulated so that it becomes
unconstrained: Rewrite the objective as a least squares problem in terms of the un-
known intensities ui,j, (i, j) /∈ I using sparse linear operators: Find linear operators
X, Y s.t. u can be decomposed as

u = Xũ+ Y f

where ũ contains only the unknown intensities. Optimize for ũ instead of u. You may
use MATALBs mldivide (for Python, check out e.g. scipy.sparse.linalg.{spsolve,
lsqr}).
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