Lecture: Dr. Tao Wu
Exercises: Yuesong Shen, Zhenzhang Ye
Winter Semester 2018/19

Computer Vision Group
Institut für Informatik
Technische Universität München

Weekly Exercises 3

Room: 01.09.014
Wednesday, 14.11.2018, 12:15-14:00
Submission deadline: Monday, 12.11.2018, 16:15, Room 01.09.014

Subdifferential

Exercise 1 (4 Points). Let the convex function $J: \mathbb{R}^{n} \rightarrow \mathbb{R} \cup\{\infty\}$ be differentiable at $u \in \operatorname{int}(\operatorname{dom}(J))$. Show that

$$
\partial J(u)=\{\nabla J(u)\}
$$

Hint: Use the definition of the subdifferential and the directional derivative. For J being differentiable at the interior of its domain, some direction $v \in \mathbb{R}^{n}$ and some point $u \in \operatorname{int}(\operatorname{dom}(J))$ the directional derivative $\partial_{v} J$ of J is given as

$$
\partial_{v} J(u):=\lim _{\epsilon \rightarrow 0} \frac{J(u+\epsilon v)-J(u)}{\epsilon}=\lim _{\epsilon \rightarrow 0} \frac{J(u)-J(u-\epsilon v)}{\epsilon}=\langle\nabla J(u), v\rangle .
$$

Solution. Recall that the subdifferential $\partial J(u)$ of some convex J at $u \in \operatorname{dom}(J)$ is given as

$$
\left\{p \in \mathbb{R}^{n}: J(v) \geq J(u)+\langle p, v-u\rangle, \forall v \in \operatorname{dom}(J)\right\} .
$$

Since $u \in \operatorname{int}(\operatorname{dom}(J))$, we find that for all $v \in \mathbb{R}^{n}, u+\epsilon v \in \operatorname{dom}(J)$ for ϵ small enough since the interior of a set is open. By the definition of the subdifferential, we have that if $p \in \partial J(u)$ then

$$
J(u+\epsilon v) \geq J(u)+\epsilon\langle p, v\rangle, \quad J(u-\epsilon v) \geq J(u)-\epsilon\langle p, v\rangle,
$$

for all $v \in \mathbb{R}^{n}$ and ϵ small enough. This implies that

$$
\lim _{\epsilon \rightarrow 0} \frac{J(u+\epsilon v)-J(u)}{\epsilon} \geq\langle p, v\rangle, \quad \lim _{\epsilon \rightarrow 0} \frac{J(u)-J(u-\epsilon v)}{\epsilon} \leq\langle p, v\rangle,
$$

which means (using the hint)

$$
\langle\nabla J(u), v\rangle \geq\langle p, v\rangle, \quad\langle\nabla J(u), v\rangle \leq\langle p, v\rangle
$$

or

$$
\langle\nabla J(u)-p, v\rangle \geq 0, \quad\langle\nabla J(u)-p, v\rangle \leq 0
$$

for all $v \in \mathbb{R}^{n}$. For the particular choice of $v:=\nabla J(u)-p$ we have that

$$
\langle\nabla J(u)-p, \nabla J(u)-p\rangle=\|\nabla J(u)-p\|_{2}^{2}=0
$$

which means $p=\nabla J(u)$. Clearly, $\partial J(u)$ is non-empty (and bounded) since $u \in$ $\operatorname{int}(\operatorname{dom}(x))$ implies $u \in \operatorname{ri}(\operatorname{dom}(x))$ (see Thm. Subdifferentiability). Together this concludes the proof.

Exercise 2 (6 Points). Compute the subdifferential of norms in Euclidean space:

- Let $\|\cdot\|$ be a norm on an Euclidean space \mathbb{E}, and $\|\cdot\|_{*}$ its dual norm defined as

$$
\|p\|_{*}=\sup _{\|x\| \leq 1}\langle p, x\rangle,
$$

prove that

$$
\begin{equation*}
\partial\|\cdot\|(x)=\left\{p \in \mathbb{E}:\langle p, x\rangle=\|x\|,\|p\|_{*} \leq 1\right\} . \tag{1}
\end{equation*}
$$

Hint: For $x \neq 0$, we have a generalized Cauchy-Schwarz inequality:

$$
\begin{equation*}
\langle x, y\rangle=\|x\|\left\langle\frac{x}{\|x\|}, y\right\rangle \leq\|x\| \cdot \sup _{\|z\| \leq 1}\langle z, y\rangle=\|x\|\|y\|_{*}, \forall x, y \in \mathbb{E} . \tag{2}
\end{equation*}
$$

- Using the result above, compute the subdifferential of the following functions:

$$
\begin{aligned}
& -J: \mathbb{R}^{n} \rightarrow \mathbb{R}, J(u)=\|u\|_{1} \\
& -J: \mathbb{R}^{n} \rightarrow \mathbb{R}, J(u)=\|u\|_{2} \\
& -J: \mathbb{R}^{n} \rightarrow \mathbb{R}, J(u)=\|u\|_{\infty}
\end{aligned}
$$

Solution.

- If $x=0$ and assume p is one of the subdifferential, we have

$$
\begin{aligned}
p \in \partial\|\cdot\|(0) & \Leftrightarrow\langle p, y\rangle \leq\|y\|, \forall y \in \mathbb{E} \\
& \Leftrightarrow \frac{\langle p, y\rangle}{\|y\|} \leq 1, \forall y \neq 0 \\
& \Leftrightarrow \sup _{y \neq 0} \frac{\langle p, y\rangle}{\|y\|} \leq 1 \\
& \Leftrightarrow \sup _{\|y\|=1}\langle p, y\rangle \leq 1 \Leftrightarrow\|p\|_{*} \leq 1
\end{aligned}
$$

For $x \neq 0$, let $p \in \mathbb{E}$ with $\langle p, x\rangle=\|x\|,\|p\|_{*} \leq 1$. Then, using the generalized Cauchy-Schwarz inequality (Eq. 2), we have

$$
\langle p, y-x\rangle+\|x\|=\langle p, y\rangle-\langle p, x\rangle+\|x\|=\langle p, y\rangle \leq\|y\|\|p\|_{*} \leq\|y\|, \forall y \in \mathbb{E}
$$

Hence $p \in \partial\|\cdot\|(x)$. Conversely take $p \in \partial\|\cdot\|(x)$. Then we have

$$
\begin{align*}
& \langle p, y-x\rangle+\|x\| \leq\|y\|, \forall y \in \mathbb{E} \\
\Leftrightarrow & \|x\|-\langle p, x\rangle+\sup _{y}\langle p, y\rangle-\|y\| \leq 0 \tag{3}
\end{align*}
$$

The supremum evaluates as

$$
\sup _{y}\langle p, y\rangle-\|y\|= \begin{cases}0, & \|p\|_{*} \leq 1 \\ \infty, & \text { otherwise } .\end{cases}
$$

We show this as the following. Assume $\|p\|_{*}>1$. Hence there is some vector $z \in \mathbb{E},\|z\| \leq 1$ and $\langle p, z\rangle>1$. It can be seen that the above supremum is unbounded, i.e. take some $y=t z, t(\langle p, z\rangle-\|z\|) \rightarrow \infty$ for $t \rightarrow \infty$. Now take $\|p\|_{*} \leq 1$, then we have $\langle p, y\rangle-\|y\| \leq\|y\|\left(\|p\|_{*}-1\right) \leq 0$, where equality holds for $y=0$.
Furthermore, we have

$$
0 \geq-\langle p, x\rangle+\|x\| \geq-\|x\|\|p\|_{*}+\|x\|=\|x\|\left(1-\|p\|_{*}\right) \geq 0
$$

Hence $-\langle p, x\rangle+\|x\|=0$ which implies $\|x\|=\langle p, x\rangle$.

- The dual norm of $\|\cdot\|_{1}$ is clearly $\|\cdot\|_{\infty}$ and vice versa. Hence,

$$
\begin{align*}
& \partial\|\cdot\|_{1}(x)=\left\{p \in \mathbb{R}^{n}:\|p\|_{\infty} \leq 1,\langle p, x\rangle=\|x\|_{1}\right\}, \\
&=\left\{p \in \mathbb{R}^{n}:\left\{\begin{array}{ll}
p_{i} \in[-1,1], & \text { if } x_{i}=0 \\
p_{i}=\operatorname{sign}\left(x_{i}\right), & \text { otherwise. }
\end{array}\right\} .\right. \tag{4}\\
& \partial\|\cdot\|_{\infty}(x)=\left\{p \in \mathbb{R}^{n}:\|p\|_{1} \leq 1,\langle p, x\rangle=\|x\|_{\infty}\right\} . \tag{5}
\end{align*}
$$

Also, it is easy to show that the dual norm of $\|\cdot\|_{2}$ is $\|\cdot\|_{2}$ itself. Thus

$$
\begin{align*}
\partial\|\cdot\|_{2}(x) & =\left\{p \in \mathbb{R}^{n}:\|p\|_{2} \leq 1,\langle p, x\rangle=\|x\|_{2}\right\} \\
& =\left\{p \in \mathbb{R}^{n}:\left\{\begin{array}{ll}
p_{i} \in \mathcal{B}(0,1), & \text { if } x=0 \\
p=\frac{x}{\|x\|_{2}}, & \text { otherwise. }
\end{array}\right\},\right. \tag{6}
\end{align*}
$$

where $\mathcal{B}(0,1)=\left\{p \in \mathbb{R}^{n}:\|p\|_{2} \leq 1\right\}$ denotes the unit ball around the origin according to the Euclidean metric.

Exercise 3 (4 points). Given $b \in \mathbb{R}^{m}, A \in \mathbb{R}^{m \times n}$ with linearly independent rows, show that the normal cone N_{C} of the linear-inequality constraints

$$
\begin{equation*}
C=\left\{u \in \mathbb{R}^{n}: A u \leq b,\right\} \tag{7}
\end{equation*}
$$

is

$$
\begin{equation*}
N_{C}(u)=\left\{A^{\top} \lambda: \lambda \geq 0, \lambda_{i}=0 \text { if }(A u-b)_{i}<0\right\} . \tag{8}
\end{equation*}
$$

Solution. Recall that by definition $N_{C}(u)=\left\{p \in \mathbb{R}^{n}:\langle p, v-u\rangle \leq 0\right.$ for all $\left.v \in C\right\}$ for given $u \in C$.

Denote $S=\left\{A^{\top} \lambda: \lambda \geq 0, \lambda_{i}=0\right.$ if $\left.(A u-b)_{i}<0\right\}$.

- First we prove that $S \subseteq N_{C}(u)$:

Let $p_{1}=A^{\top} \lambda_{1} \in S$, then

$$
\begin{equation*}
\forall v \in C,\left\langle p_{1}, v-u\right\rangle=\left\langle\lambda_{1}, A(v-u)\right\rangle \leq 0 \tag{9}
\end{equation*}
$$

because component-wise it holds for $\left(\lambda_{1}\right)_{i}=0$, and when $\left(\lambda_{1}\right)_{i}>0$ we have $(b-A u)_{i}=0$, thus $(A(v-u))_{i} \leq(b-A u)_{i}=0$.
Hence we have $p_{1} \in N_{C}(u)$ and $S \subseteq N_{C}(u)$.

- Then we prove that $N_{C}(u) \subseteq S$:

Let $p_{2} \in N_{C}(u)$, since rows of A are independent, there exists a unique pair of $\left(\lambda_{2}, \mu_{2}\right) \in \mathbb{R}^{m} \times \mathbb{R}^{n}$ such that p_{2} can be decomposed as follows:

$$
\begin{equation*}
p_{2}=A^{\top} \lambda_{2}+\mu_{2}, \text { with } A \mu_{2}=0 \tag{10}
\end{equation*}
$$

where $A^{\top} \lambda_{2}$ is the projection of p_{2} onto the subspace of \mathbb{R}^{n} spanned by the rows of A and μ_{2} is the component in the null space of A.

Since $u+\mu_{2} \in C$, we have that

$$
\begin{equation*}
\left\langle p_{2},\left(u+\mu_{2}\right)-u\right\rangle=\left\langle\lambda_{2}, A \mu_{2}\right\rangle+\left\langle\mu_{2}, \mu_{2}\right\rangle=0+\left\|\mu_{2}\right\|^{2} \leq 0 \tag{11}
\end{equation*}
$$

Thus the component in null space $\mu_{2}=0$.
Let $a \in \mathbb{R}$ and $e_{i} \in \mathbb{R}^{m}$ be the i-th vector in the canonical basis. Since rows of A are independent, we can find $v_{0} \in C$ such that $A v_{0}=A u+a e_{i}$ so long as $A u+a e_{i} \leq b$, in which case we have

$$
\begin{equation*}
\left\langle p_{2}, v_{0}-u\right\rangle=\left\langle\lambda_{2}, A\left(v_{0}-u\right)\right\rangle=\left\langle\lambda_{2}, a e_{i}\right\rangle=a\left(\lambda_{2}\right)_{i} \leq 0 \tag{12}
\end{equation*}
$$

Since for $a \leq 0, A u+a e_{i} \leq b$ always holds, we must have $\left(\lambda_{2}\right)_{i} \geq 0$ for Eq. 12 to hold.

Furthermore, when $(A u)_{i}<b_{i}$, a can also take any positive value up to $b_{i}-$ $(A u)_{i}$. In this case, for Eq. 12 to hold, we must have $\left(\lambda_{2}\right)_{i}=0$.
The above reasoning shows that $p_{2} \in S$, which proves that $N_{C}(u) \subseteq S$.
Thus we have proved that $N_{C}(u)=S=\left\{A^{\top} \lambda: \lambda \geq 0, \lambda_{i}=0\right.$ if $\left.(A u-b)_{i}<0\right\}$.
Exercise 4 (6 points). Compute the subdifferential of nuclear norm:

$$
X \in \mathbb{R}^{n \times n} \mapsto\|X\|_{\text {nuclear }}=\sum_{i} \sigma_{i}(X)
$$

i.e., sum of singular values.

Hint: Show that the subdifferential at point $X \in \mathbb{R}^{n \times n}$ with $s \geq 0$ zero singular values is given as

$$
\begin{equation*}
\partial\|\cdot\|_{\mathrm{nuc}}(X)=\left\{U_{1} V_{1}^{\top}+U_{2} M V_{2}^{\top}: M \in \mathbb{R}^{s \times s},\|M\|_{\text {spec }} \leq 1\right\} \tag{13}
\end{equation*}
$$

where $U=\left[\begin{array}{ll}U_{1} & U_{2}\end{array}\right]$ and $V=\left[\begin{array}{ll}V_{1} & V_{2}\end{array}\right]$ are given by the singular value decomposition of $X=U \Sigma V^{\top}$, with U_{1} and V_{1} having $n-s$ columns. Furthermore $\|\cdot\|_{\text {spec }}$ denotes the spectral norm, i.e., the largest singular value.

Solution. Denote by $\langle X, Y\rangle=\operatorname{tr}\left(X^{T} Y\right)$. First we show that the dual norm of the nuclear norm is the spectral norm, i.e.,

$$
\sup _{\sum_{i} \sigma_{i}(Y) \leq 1}\langle X, Y\rangle=\sigma_{1}(X)
$$

Clearly, $\sup _{\sum_{i} \sigma_{i}(Y) \leq 1}\langle X, Y\rangle \geq \sigma_{1}(X)$ since the supremum is bigger than the function at the feasible candidate $Y=u_{1} v_{1}^{T}$ (for $X=U \Sigma V^{T}$) for which the supremum evaluates to $\left\langle u_{1} v_{1}^{T}, U \Sigma V^{T}\right\rangle=\sigma_{1}(X)$. The other inequality (again with $X=U \Sigma V^{T}$) follows from von Neumann's trace inequality $\operatorname{tr}(A B) \leq \sum_{i=1}^{n} \sigma_{i}(A) \sigma_{i}(B)$.

$$
\begin{equation*}
\sup _{\sum_{i} \sigma_{i}(Y) \leq 1}\langle Y, X\rangle=\sup _{\sum_{i} \sigma_{i}(Y) \leq 1} \operatorname{tr}\left(Y^{T} X\right) \leq \sup _{\sum_{i} \sigma_{i}(Y) \leq 1} \sum_{i=1}^{n} \sigma_{i}(X) \sigma_{i}(Y)=\sigma_{1}(X) . \tag{14}
\end{equation*}
$$

Hence, from the previous solution, it then follows that

$$
\begin{equation*}
\partial\|X\|_{\mathrm{nuc}}=\left\{Y \in \mathbb{R}^{n \times n}:\langle X, Y\rangle=\|X\|_{\mathrm{nuc}},\|Y\|_{\mathrm{spec}} \leq 1\right\} . \tag{15}
\end{equation*}
$$

We finish the proof by showing that (13) and (15) are the same. Denote by $X=$ $U_{1} \Sigma V_{1}^{T}$ denote the compact SVD of X.

First we take some Y that satisfies (15), i.e., $\langle X, Y\rangle=\|X\|_{\text {nuc }}$ and $\|Y\|_{\text {spec }} \leq 1$ and show it is in (13). For that, consider the subspace $S=\left\{U_{1} W V_{1}^{T}: W \in \mathbb{R}^{r \times r}\right\}$ where $r=n-s$ and its orthogonal complement $S^{\perp}=\left\{U_{2} M V_{2}^{T}: M \in \mathbb{R}^{s \times s}\right\}$. Then we can write $Y=\Pi_{S}(Y)+\Pi_{S^{\perp}}(Y)=U_{1} W V_{1}^{T}+U_{2} M V_{2}^{T}$ for some W and M.

Since we have

$$
\begin{align*}
\langle Y, X\rangle & =\left\langle U_{1} W V_{1}^{T}+U_{2} M V_{2}^{T}, U_{1} \Sigma V_{1}^{T}\right\rangle=\left\langle U_{1} W V_{1}^{T}, U_{1} \Sigma V_{1}^{T}\right\rangle \\
& =\operatorname{tr}\left(V_{1}^{T} W^{T} U_{1}^{T} U \Sigma V_{1}\right)=\operatorname{tr}\left(W^{T} \Sigma\right) \stackrel{\text { assumption }}{=} \operatorname{tr}(\Sigma) \tag{16}
\end{align*}
$$

we can conclude that $W=I$ and hence $Y=U_{1} V_{1}^{T}+U_{2} M V_{2}^{T}$. Since projections always have Lipschitz constant less or equal one we have that

$$
\|M\|_{\text {spec }}=\left\|U_{2} M V_{2}^{T}\right\|_{\text {spec }}=\left\|\Pi_{S^{\perp}}(Y)\right\|_{\text {spec }} \leq\|Y\|_{\text {spec }} \stackrel{\text { assumption }}{\leq} 1,
$$

where we used the unitary invariance of the spectral norm in the first equality.
Conversely take some $U_{1} V_{1}^{T}+U_{2} M V_{2}^{T}$ from (13) with $\|M\|_{\text {spec }} \leq 1$ and $X=$ $U_{1} \Sigma V_{1}^{T}$. We show that it satisfies (15):

$$
\left\langle U_{1} V_{1}^{T}+U_{2} M V_{2}^{T}, U_{1} \Sigma V_{1}^{T}\right\rangle=\operatorname{tr}\left(V_{1} U_{1}^{T} U \Sigma V_{1}^{T}\right)=\operatorname{tr}(\Sigma)=\|X\|_{\text {nuc }} .
$$

For the spectral norm we use the fact that if $\|A x\|^{2} \leq\|x\|^{2}$, then $\|A\|_{\text {spec }} \leq 1$.

$$
\begin{align*}
\left\|\left(U_{1} V_{1}^{T}+U_{2} M V_{2}^{T}\right) x\right\|^{2} & =\left\langle U_{1} V_{1}^{T} x+U_{2} M V_{2}^{T} x, U_{1} V_{1}^{T} x+U_{2} M V_{2}^{T} x\right\rangle \\
& =\left\langle x,\left(U_{1} V_{1}^{T}+U_{2} M V_{2}^{T}\right)^{T}\left(U_{1} V_{1}^{T}+U_{2} M V_{2}^{T}\right) x\right\rangle \\
& =\left\langle x,\left(V_{1} U_{1}^{T} U_{1} V_{1}^{T} x\right\rangle+\left\langle x, V_{2} M^{T} U_{2}^{T} U_{2} M V_{2}^{T} x\right\rangle\right. \\
& \underbrace{+\left\langle x, V_{1} U_{1}^{T} U_{2} M V_{2}^{T} x\right\rangle+\left\langle x, V_{2} M^{T} U_{2}^{T} U_{1} V_{1}^{T} x\right\rangle}_{=0} \tag{17}\\
& =\left\langle V_{1}^{T} x, V_{1}^{T} x\right\rangle+\left\langle M V_{2}^{T} x, M V_{2}^{T} x\right\rangle \\
& =\left\|V_{1}^{T} x_{1}\right\|^{2}+\left\|M V_{2}^{T} x_{2}\right\| \\
& \begin{array}{c}
\text { assumption } \\
\leq
\end{array}\left\|x_{1}\right\|^{2}+\left\|x_{2}\right\|^{2}=\|x\|^{2},
\end{align*}
$$

where we decomposed $x=x_{1}+x_{2}$ onto the subspace spanned by V_{2}^{T} and its orthogonal complement in the second to last step.

