Convex Optimization for Machine Learning and Computer Vision

Lecture: Dr. Tao Wu Exercises: Yuesong Shen, Zhenzhang Ye Winter Semester 2018/19 Computer Vision Group Institut für Informatik Technische Universität München

Weekly Exercises 3

Room: 01.09.014 Wednesday, 14.11.2018, 12:15-14:00 Submission deadline: Monday, 12.11.2018, 16:15, Room 01.09.014

Subdifferential

(14+6 Points)

Exercise 1 (4 Points). Let the convex function $J : \mathbb{R}^n \to \mathbb{R} \cup \{\infty\}$ be differentiable at $u \in int(dom(J))$. Show that

$$\partial J(u) = \{\nabla J(u)\}.$$

Hint: Use the definition of the subdifferential and the directional derivative. For J being differentiable at the interior of its domain, some direction $v \in \mathbb{R}^n$ and some point $u \in int(dom(J))$ the directional derivative $\partial_v J$ of J is given as

$$\partial_v J(u) := \lim_{\epsilon \to 0} \frac{J(u + \epsilon v) - J(u)}{\epsilon} = \lim_{\epsilon \to 0} \frac{J(u) - J(u - \epsilon v)}{\epsilon} = \langle \nabla J(u), v \rangle.$$

Solution. Recall that the subdifferential $\partial J(u)$ of some convex J at $u \in \text{dom}(J)$ is given as

$$\{p \in \mathbb{R}^n : J(v) \ge J(u) + \langle p, v - u \rangle, \forall v \in \operatorname{dom}(J)\}.$$

Since $u \in \text{int}(\text{dom}(J))$, we find that for all $v \in \mathbb{R}^n$, $u + \epsilon v \in \text{dom}(J)$ for ϵ small enough since the interior of a set is open. By the definition of the subdifferential, we have that if $p \in \partial J(u)$ then

$$J(u + \epsilon v) \ge J(u) + \epsilon \langle p, v \rangle, \quad J(u - \epsilon v) \ge J(u) - \epsilon \langle p, v \rangle,$$

for all $v \in \mathbb{R}^n$ and ϵ small enough. This implies that

$$\lim_{\epsilon \to 0} \frac{J(u+\epsilon v) - J(u)}{\epsilon} \ge \langle p, v \rangle, \quad \lim_{\epsilon \to 0} \frac{J(u) - J(u-\epsilon v)}{\epsilon} \le \langle p, v \rangle,$$

which means (using the hint)

 $\langle \nabla J(u), v \rangle \geq \langle p, v \rangle, \quad \langle \nabla J(u), v \rangle \leq \langle p, v \rangle$

or

$$\langle \nabla J(u) - p, v \rangle \ge 0, \quad \langle \nabla J(u) - p, v \rangle \le 0$$

for all $v \in \mathbb{R}^n$. For the particular choice of $v := \nabla J(u) - p$ we have that

$$\langle \nabla J(u) - p, \nabla J(u) - p \rangle = \|\nabla J(u) - p\|_2^2 = 0$$

which means $p = \nabla J(u)$. Clearly, $\partial J(u)$ is non-empty (and bounded) since $u \in int(dom(x))$ implies $u \in ri(dom(x))$ (see Thm. Subdifferentiability). Together this concludes the proof.

Exercise 2 (6 Points). Compute the subdifferential of norms in Euclidean space:

• Let $\|\cdot\|$ be a norm on an Euclidean space \mathbb{E} , and $\|\cdot\|_*$ its dual norm defined as

$$||p||_* = \sup_{\|x\| \le 1} \langle p, x \rangle,$$

prove that

$$\partial \|\cdot\| (x) = \{ p \in \mathbb{E} : \langle p, x \rangle = \|x\|, \|p\|_* \le 1 \}.$$
 (1)

Hint: For $x \neq 0$, we have a generalized Cauchy-Schwarz inequality:

$$\langle x, y \rangle = \|x\| \left\langle \frac{x}{\|x\|}, y \right\rangle \le \|x\| \cdot \sup_{\|z\| \le 1} \langle z, y \rangle = \|x\| \|y\|_*, \ \forall x, y \in \mathbb{E}.$$
(2)

• Using the result above, compute the subdifferential of the following functions:

$$-J: \mathbb{R}^n \to \mathbb{R}, J(u) = ||u||_1.$$

$$-J: \mathbb{R}^n \to \mathbb{R}, J(u) = ||u||_2.$$

$$-J: \mathbb{R}^n \to \mathbb{R}, J(u) = ||u||_{\infty}.$$

Solution.

• If x = 0 and assume p is one of the subdifferential, we have

$$p \in \partial \|\cdot\| (0) \Leftrightarrow \langle p, y \rangle \le \|y\|, \forall y \in \mathbb{E}$$
$$\Leftrightarrow \frac{\langle p, y \rangle}{\|y\|} \le 1, \forall y \ne 0$$
$$\Leftrightarrow \sup_{y \ne 0} \frac{\langle p, y \rangle}{\|y\|} \le 1$$
$$\Leftrightarrow \sup_{\|y\|=1} \langle p, y \rangle \le 1 \Leftrightarrow \|p\|_* \le 0$$

For $x \neq 0$, let $p \in \mathbb{E}$ with $\langle p, x \rangle = ||x||, ||p||_* \leq 1$. Then, using the generalized Cauchy-Schwarz inequality (Eq. 2), we have

$$\langle p, y - x \rangle + \|x\| = \langle p, y \rangle - \langle p, x \rangle + \|x\| = \langle p, y \rangle \le \|y\| \|p\|_* \le \|y\|, \forall y \in \mathbb{E}.$$

Hence $p \in \partial \|\cdot\| (x)$. Conversely take $p \in \partial \|\cdot\| (x)$. Then we have

$$\langle p, y - x \rangle + \|x\| \le \|y\|, \forall y \in \mathbb{E} \Leftrightarrow \|x\| - \langle p, x \rangle + \sup_{y} \langle p, y \rangle - \|y\| \le 0$$

$$(3)$$

1

The supremum evaluates as

$$\sup_{y} \langle p, y \rangle - \|y\| = \begin{cases} 0, & \|p\|_* \le 1\\ \infty, & \text{otherwise.} \end{cases}.$$

We show this as the following. Assume $||p||_* > 1$. Hence there is some vector $z \in \mathbb{E}$, $||z|| \leq 1$ and $\langle p, z \rangle > 1$. It can be seen that the above supremum is unbounded, i.e. take some y = tz, $t(\langle p, z \rangle - ||z||) \to \infty$ for $t \to \infty$. Now take $||p||_* \leq 1$, then we have $\langle p, y \rangle - ||y|| \leq ||y|| (||p||_* - 1) \leq 0$, where equality holds for y = 0.

Furthermore, we have

$$0 \ge -\langle p, x \rangle + \|x\| \ge -\|x\| \|p\|_* + \|x\| = \|x\| (1 - \|p\|_*) \ge 0$$

Hence $-\langle p, x \rangle + ||x|| = 0$ which implies $||x|| = \langle p, x \rangle$.

• The dual norm of $\|\cdot\|_1$ is clearly $\|\cdot\|_\infty$ and vice versa. Hence,

$$\partial \|\cdot\|_1 (x) = \{ p \in \mathbb{R}^n : \|p\|_{\infty} \le 1, \langle p, x \rangle = \|x\|_1 \},$$

=
$$\left\{ p \in \mathbb{R}^n : \left\{ \begin{aligned} p_i \in [-1, 1], & \text{if } x_i = 0\\ p_i = \operatorname{sign}(x_i), & \text{otherwise.} \end{aligned} \right\}.$$
(4)

$$\partial \left\|\cdot\right\|_{\infty}(x) = \{p \in \mathbb{R}^n : \left\|p\right\|_1 \le 1, \langle p, x \rangle = \left\|x\right\|_{\infty}\}.$$
(5)

Also, it is easy to show that the dual norm of $\|\cdot\|_2$ is $\|\cdot\|_2$ itself. Thus

$$\partial \|\cdot\|_2 (x) = \{ p \in \mathbb{R}^n : \|p\|_2 \le 1, \langle p, x \rangle = \|x\|_2 \}$$
$$= \left\{ p \in \mathbb{R}^n : \left\{ \begin{aligned} p_i \in \mathcal{B}(0, 1), & \text{if } x = 0 \\ p = \frac{x}{\|x\|_2}, & \text{otherwise.} \end{aligned} \right\},$$
(6)

where $\mathcal{B}(0,1) = \{p \in \mathbb{R}^n : ||p||_2 \le 1\}$ denotes the unit ball around the origin according to the Euclidean metric.

Exercise 3 (4 points). Given $b \in \mathbb{R}^m$, $A \in \mathbb{R}^{m \times n}$ with linearly independent rows, show that the normal cone N_C of the linear-inequality constraints

$$C = \{ u \in \mathbb{R}^n : Au \le b, \}$$

$$\tag{7}$$

is

$$N_C(u) = \{ A^\top \lambda : \lambda \ge 0, \lambda_i = 0 \text{ if } (Au - b)_i < 0 \}.$$
(8)

Solution. Recall that by definition $N_C(u) = \{p \in \mathbb{R}^n : \langle p, v - u \rangle \leq 0 \text{ for all } v \in C\}$ for given $u \in C$.

Denote $S = \{A^{\top}\lambda : \lambda \ge 0, \lambda_i = 0 \text{ if } (Au - b)_i < 0\}.$

- First we prove that $S \subseteq N_C(u)$:
 - Let $p_1 = A^{\top} \lambda_1 \in S$, then

$$\forall v \in C, \langle p_1, v - u \rangle = \langle \lambda_1, A(v - u) \rangle \le 0, \tag{9}$$

because component-wise it holds for $(\lambda_1)_i = 0$, and when $(\lambda_1)_i > 0$ we have $(b - Au)_i = 0$, thus $(A(v - u))_i \leq (b - Au)_i = 0$.

Hence we have $p_1 \in N_C(u)$ and $S \subseteq N_C(u)$.

• Then we prove that $N_C(u) \subseteq S$:

Let $p_2 \in N_C(u)$, since rows of A are independent, there exists a unique pair of $(\lambda_2, \mu_2) \in \mathbb{R}^m \times \mathbb{R}^n$ such that p_2 can be decomposed as follows:

$$p_2 = A^{\top} \lambda_2 + \mu_2$$
, with $A\mu_2 = 0$ (10)

where $A^{\top}\lambda_2$ is the projection of p_2 onto the subspace of \mathbb{R}^n spanned by the rows of A and μ_2 is the component in the null space of A.

Since $u + \mu_2 \in C$, we have that

$$\langle p_2, (u+\mu_2) - u \rangle = \langle \lambda_2, A\mu_2 \rangle + \langle \mu_2, \mu_2 \rangle = 0 + ||\mu_2||^2 \le 0,$$
 (11)

Thus the component in null space $\mu_2 = 0$.

Let $a \in \mathbb{R}$ and $e_i \in \mathbb{R}^m$ be the *i*-th vector in the canonical basis. Since rows of A are independent, we can find $v_0 \in C$ such that $Av_0 = Au + ae_i$ so long as $Au + ae_i \leq b$, in which case we have

$$\langle p_2, v_0 - u \rangle = \langle \lambda_2, A(v_0 - u) \rangle = \langle \lambda_2, ae_i \rangle = a(\lambda_2)_i \le 0.$$
 (12)

Since for $a \leq 0$, $Au + ae_i \leq b$ always holds, we must have $(\lambda_2)_i \geq 0$ for Eq. 12 to hold.

Furthermore, when $(Au)_i < b_i$, a can also take any positive value up to $b_i - (Au)_i$. In this case, for Eq. 12 to hold, we must have $(\lambda_2)_i = 0$.

The above reasoning shows that $p_2 \in S$, which proves that $N_C(u) \subseteq S$.

Thus we have proved that $N_C(u) = S = \{A^{\top}\lambda : \lambda \ge 0, \lambda_i = 0 \text{ if } (Au - b)_i < 0\}.$ Exercise 4 (6 points). Compute the subdifferential of nuclear norm:

$$X \in \mathbb{R}^{n \times n} \mapsto \|X\|_{nuclear} = \sum_{i} \sigma_i(X),$$

i.e., sum of singular values.

Hint: Show that the subdifferential at point $X \in \mathbb{R}^{n \times n}$ with $s \ge 0$ zero singular values is given as

$$\partial \|\cdot\|_{\text{nuc}} (X) = \left\{ U_1 V_1^\top + U_2 M V_2^\top : M \in \mathbb{R}^{s \times s}, \|M\|_{\text{spec}} \le 1 \right\},$$
(13)

where $U = \begin{bmatrix} U_1 & U_2 \end{bmatrix}$ and $V = \begin{bmatrix} V_1 & V_2 \end{bmatrix}$ are given by the singular value decomposition of $X = U\Sigma V^{\top}$, with U_1 and V_1 having n - s columns. Furthermore $\|\cdot\|_{\text{spec}}$ denotes the spectral norm, i.e., the largest singular value. **Solution.** Denote by $\langle X, Y \rangle = tr(X^T Y)$. First we show that the dual norm of the nuclear norm is the spectral norm, i.e.,

$$\sup_{\sum_i \sigma_i(Y) \le 1} \langle X, Y \rangle = \sigma_1(X)$$

Clearly, $\sup_{\sum_i \sigma_i(Y) \leq 1} \langle X, Y \rangle \geq \sigma_1(X)$ since the supremum is bigger than the function at the feasible candidate $Y = u_1 v_1^T$ (for $X = U \Sigma V^T$) for which the supremum evaluates to $\langle u_1 v_1^T, U \Sigma V^T \rangle = \sigma_1(X)$. The other inequality (again with $X = U \Sigma V^T$) follows from von Neumann's trace inequality $\operatorname{tr}(AB) \leq \sum_{i=1}^n \sigma_i(A) \sigma_i(B)$.

$$\sup_{\sum_{i}\sigma_{i}(Y)\leq 1} \langle Y,X\rangle = \sup_{\sum_{i}\sigma_{i}(Y)\leq 1} \operatorname{tr}(Y^{T}X) \leq \sup_{\sum_{i}\sigma_{i}(Y)\leq 1} \sum_{i=1}^{n} \sigma_{i}(X)\sigma_{i}(Y) = \sigma_{1}(X).$$
(14)

Hence, from the previous solution, it then follows that

$$\partial \|X\|_{\text{nuc}} = \{Y \in \mathbb{R}^{n \times n} : \langle X, Y \rangle = \|X\|_{\text{nuc}}, \|Y\|_{\text{spec}} \le 1\}.$$
 (15)

We finish the proof by showing that (13) and (15) are the same. Denote by $X = U_1 \Sigma V_1^T$ denote the compact SVD of X.

First we take some Y that satisfies (15), i.e., $\langle X, Y \rangle = ||X||_{\text{nuc}}$ and $||Y||_{\text{spec}} \leq 1$ and show it is in (13). For that, consider the subspace $S = \{U_1 W V_1^T : W \in \mathbb{R}^{r \times r}\}$ where r = n - s and its orthogonal complement $S^{\perp} = \{U_2 M V_2^T : M \in \mathbb{R}^{s \times s}\}$. Then we can write $Y = \prod_S(Y) + \prod_{S^{\perp}}(Y) = U_1 W V_1^T + U_2 M V_2^T$ for some W and M.

Since we have

$$\langle Y, X \rangle = \langle U_1 W V_1^T + U_2 M V_2^T, U_1 \Sigma V_1^T \rangle = \langle U_1 W V_1^T, U_1 \Sigma V_1^T \rangle$$

= tr($V_1^T W^T U_1^T U \Sigma V_1$) = tr($W^T \Sigma$) $\stackrel{\text{assumption}}{=}$ tr(Σ) (16)

we can conclude that W = I and hence $Y = U_1V_1^T + U_2MV_2^T$. Since projections always have Lipschitz constant less or equal one we have that

$$\|M\|_{\operatorname{spec}} = \|U_2 M V_2^T\|_{\operatorname{spec}} = \|\Pi_{S^{\perp}}(Y)\|_{\operatorname{spec}} \le \|Y\|_{\operatorname{spec}} \stackrel{\operatorname{assumption}}{\le} 1,$$

where we used the unitary invariance of the spectral norm in the first equality.

Conversely take some $U_1V_1^T + U_2MV_2^T$ from (13) with $||M||_{\text{spec}} \leq 1$ and $X = U_1\Sigma V_1^T$. We show that it satisfies (15):

$$\langle U_1 V_1^T + U_2 M V_2^T, U_1 \Sigma V_1^T \rangle = \operatorname{tr}(V_1 U_1^T U \Sigma V_1^T) = \operatorname{tr}(\Sigma) = ||X||_{\operatorname{nuc}}.$$

For the spectral norm we use the fact that if $||Ax||^2 \le ||x||^2$, then $||A||_{\text{spec}} \le 1$.

$$\begin{aligned} \left\| (U_{1}V_{1}^{T} + U_{2}MV_{2}^{T})x \right\|^{2} &= \langle U_{1}V_{1}^{T}x + U_{2}MV_{2}^{T}x, U_{1}V_{1}^{T}x + U_{2}MV_{2}^{T}x \rangle \\ &= \langle x, (U_{1}V_{1}^{T} + U_{2}MV_{2}^{T})^{T}(U_{1}V_{1}^{T} + U_{2}MV_{2}^{T})x \rangle \\ &= \langle x, (V_{1}U_{1}^{T}U_{1}V_{1}^{T}x \rangle + \langle x, V_{2}M^{T}U_{2}^{T}U_{2}MV_{2}^{T}x \rangle \\ &+ \langle x, V_{1}U_{1}^{T}U_{2}MV_{2}^{T}x \rangle + \langle x, V_{2}M^{T}U_{2}^{T}U_{1}V_{1}^{T}x \rangle \\ &= \langle V_{1}^{T}x, V_{1}^{T}x \rangle + \langle MV_{2}^{T}x, MV_{2}^{T}x \rangle \\ &= \| V_{1}^{T}x_{1} \|^{2} + \| MV_{2}^{T}x_{2} \| \\ &\stackrel{\text{assumption}}{\leq} \| x_{1} \|^{2} + \| x_{2} \|^{2} = \| x \|^{2}, \end{aligned}$$
(17)

where we decomposed $x = x_1 + x_2$ onto the subspace spanned by V_2^T and its orthogonal complement in the second to last step.