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Subdifferential (14+6 Points)

Exercise 1 (4 Points). Let the convex function J : R* — RU{oo} be differentiable
at u € int(dom(J)). Show that

0J(u) ={VJ(u)}.

Hint: Use the definition of the subdifferential and the directional derivative. For J
being differentiable at the interior of its domain, some direction v € R"™ and some
point u € int(dom(.J)) the directional derivative 0,J of J is given as

dyJ (u) := lim Jute) = Jw) _y, T = J(u—ev)

e—0 € e—0 €

= (VJ(u),v).

Solution. Recall that the subdifferential 0.J(u) of some convex J at u € dom(/J) is
given as

{peR": J(v) > J(u)+ (p,v —u), Vv € dom(J)}.

Since u € int(dom(J)), we find that for all v € R", u + ev € dom(J) for € small
enough since the interior of a set is open. By the definition of the subdifferential,
we have that if p € 0J(u) then

J(u+ev) > J(u) + e(p,v), J(u—ev) > J(u)—ep,v),

for all v € R™ and € small enough. This implies that

lim J(u+ ev) — J(u) > (o), lim J(u) — J(u — ev)

e—0 € e—0 € S <p’ ?}>,
which means (using the hint)
(VJ(u),v) = (p,v), (VJ(u),v) < (p,v)

or

<v‘](u) - b U> > 07 <VJ(U) - b U> <0



for all v € R™. For the particular choice of v := V.J(u) — p we have that
(VJ(u) = p,VJI(u) = p) = |[VJ(u) = pl3 =0

which means p = VJ(u). Clearly, 0J(u) is non-empty (and bounded) since u €
int(dom(x)) implies u € ri(dom(x)) (see Thm. Subdifferentiability). Together this
concludes the proof.

Exercise 2 (6 Points). Compute the subdifferential of norms in Euclidean space:

e Let ||-|| be a norm on an Euclidean space E, and ||-||, its dual norm defined as

|pll, = sup (p, ),

=<1

prove that
Ol (x) ={p € E: (p,x) = ||zl , [[p]l. < 1} (1)

Hint: For = # 0, we have a generalized Cauchy-Schwarz inequality:

T
(z,y) = ] <m,y> < |lzll - sup (z,9) = [lz]l lyll, Yo,y € B (2)

llzll<1

e Using the result above, compute the subdifferential of the following functions:
- J:R" = R, J(u) = ||ull;.
- J:R" = R, J(u) = ||ul],.
— J:R*" =R, J(u) = ||luf .
Solution.
e If x = 0 and assume p is one of the subdifferential, we have

p €I (0) < (py) <|yll,Vy e E

@%ﬁlﬂy#o

For z # 0, let p € E with (p,z) = ||z, ||p|l, < 1. Then, using the generalized
Cauchy-Schwarz inequality (Eq. 2), we have

Dy =) + |zl = (2, y) = (p.2) + =l = (2, y) < llyllIpll, < llyll, vy € E.
Hence p € 9 ||-|| (). Conversely take p € @ ||-|| (x). Then we have

(py — )+ ||z|| < |lyl| ., ¥y € E
& 2| = (p,x) +sup (p,y) — |lyll <0 (3)
Yy
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The supremum evaluates as

Ipll, <1

y otherwise.

0,
sup (p,y) — |lyll = {OO

We show this as the following. Assume ||p||, > 1. Hence there is some vector
z € E, ||z]|| £1and (p,z) > 1. It can be seen that the above supremum is
unbounded, i.e. take some y = tz, t((p, z) — ||z]|) — oo for t — co. Now take
[pll, <1, then we have (p,y) — [lyll < [yl (llpll. = 1) < 0, where equality holds
for y = 0.

Furthermore, we have
0> —(px) + [lzll = = llzll lpll, + 2l = fl=]l (1 = flpll,) = 0
Hence —(p, z) + ||z|| = 0 which implies ||z| = (p, ).

e The dual norm of ||-||, is clearly |||, and vice versa. Hence,

Oy () = {p e R" - [Ipll <1, (p, ) = [l },
- _— 1 R p— 4
:{peRn:{ple[.l,l], it x, .o}' (4)
p; = sign(z;), otherwise.
Ol () = {p € R" - [Ipll; <1, (p, ) = |[z[ }- (5)

Also, it is easy to show that the dual norm of |-||, is [|-||, itself. Thus
Oy (z) = {p e R" : [Iplly < 1, (p, x) = ||=[l,}

:{peRn:{pieB(O,l), it 7 =0 } (6)

P= otherwise.
2

where B(0,1) = {p € R™ : ||p||, < 1} denotes the unit ball around the origin
according to the Euclidean metric.

Exercise 3 (4 points). Given b € R™ A € R™*" with linearly independent rows,
show that the normal cone N¢ of the linear-inequality constraints

C={ueR": Au<b,} (7)
” Ne(u) = {ATA: A >0, = 0if (Au —b); < 0}. (8)

Solution. Recall that by definition No(u) = {p € R" : (p,v —u) < 0 for all v € C'}
for given u € C.
Denote S = {ATA: X >0,\ =0 if (Au —b); < 0}.



e First we prove that S C Ne(u):
Let py = ATA\; € S, then
Vo e C, (pr1,v —u) = (A, A(v —u)) <0, (9)
because component-wise it holds for (A\;); = 0, and when (A;); > 0 we have
(b — Au); = 0, thus (A(v — u)); < (b— Au); = 0.
Hence we have p; € Ne(u) and S C Ne(u).
e Then we prove that N¢(u) C S:

Let ps € N¢(u), since rows of A are independent, there exists a unique pair of
(A2, p2) € R™ x R™ such that ps can be decomposed as follows:

po = AT Xy + 1o, with Aps =0 (10)
where AT\, is the projection of p, onto the subspace of R” spanned by the
rows of A and pus is the component in the null space of A.

Since u + py € C', we have that

(P2, (U + p12) — u) = (Ag, Apig) + (pi2, pr2) = 0+ ”,u2H2 <0, (11)
Thus the component in null space py = 0.

Let @ € R and ¢; € R™ be the i-th vector in the canonical basis. Since rows
of A are independent, we can find vy € C' such that Avg = Au+ ae; so long as
Au + ae; < b, in which case we have

<p2,1)0 — U) = </\2, A(UO - U)> == </\2, CL@Z‘> = (l()\g)i S 0. (12)
Since for a < 0, Au+ ae; < b always holds, we must have (Ay); > 0 for Eq. 12
to hold.

Furthermore, when (Au); < b;, a can also take any positive value up to b; —
(Au);. In this case, for Eq. 12 to hold, we must have (\2); = 0.

The above reasoning shows that py € S, which proves that No(u) C S.
Thus we have proved that No(u) =S = {ATA: X >0, )\, =0 if (Au — b); < 0}.
Exercise 4 (6 points). Compute the subdifferential of nuclear norm:
X € R™™ HXHnuclear = Zaz(X)>
i.e., sum of singular values.

Hint: Show that the subdifferential at point X € R™"™ with s > 0 zero singular
values is given as

O e () = {1V + MV, M e R, M <1}, (13)

where U = [Ul UQ} and V = [Vl Vg] are given by the singular value decomposition
of X = UXV", with U; and V; having n — s columns. Furthermore ||‘||Spec denotes
the spectral norm, i.e., the largest singular value.
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Solution. Denote by (X,Y) = tr(X7Y). First we show that the dual norm of the
nuclear norm is the spectral norm, i.e.,

sup  (X,Y) =o1(X).

> 0i(Y)<1

Clearly, sups- ,.yy<1 (X,Y) > 01(X) since the supremum is bigger than the func-

tion at the feasible candidate Y = wyv! (for X = UXVT) for which the supremum
evaluates to (ujv! ,UXVT) = ¢1(X). The other inequality (again with X = UXV7T)
follows from von Neumann’s trace inequality tr(AB) < " 0;(A)o;(B).

n

sup (Y, X)= sup tr(YTX)< sup Zai(X>Ui(Y) = o1(X).

> 0i(V)<1 > 0i(YV)<1 > 0i(V)<1 i=1
(14)
Hence, from the previous solution, it then follows that
a ||X||nuc = {Y E Rnxn : <X7 Y> = ||X||nuc Y ||Y||spec S 1} (]‘5)

We finish the proof by showing that (13) and (15) are the same. Denote by X =
UV denote the compact SVD of X.

First we take some Y that satisfies (15), i.e., (X,Y) = || X[|,,. and [[Y[| .. <1
and show it is in (13). For that, consider the subspace S = {U;WV]T : W € R™*"}
where r = n — s and its orthogonal complement S+ = {U, MV}l : M € R¥**}. Then
we can write Y = Ig(Y) + g (V) = UyWVT + Uy MV, for some W and M.

Since we have
(Y, X) = (LWV] + UMV, UV = (UW V], U SV

assumption (16)
= tr(VTWTUTUSV) = tr(WTS) 20 1(3)

we can conclude that W = I and hence Y = U; VT + UM V!, Since projections

always have Lipschitz constant less or equal one we have that

assumption

1Moo = [T02MVS oo = ITst (V)llpee < MY Mlgpee = 1,

spec spec

where we used the unitary invariance of the spectral norm in the first equality.
Conversely take some Uy Vi" 4 Uy MV, from (13) with [[M]| .. < 1 and X =
U1 XV{E. We show that it satisfies (15):
(VT + UMV, USV) = te(ViUTUEY) = t1(3) = || X||

nuc °



For the spectral norm we use the fact that if HAxH2 < HwH2, then ||A]| < 1.

spec

(Vi + UMV )z | UV + UMV e, UV 2 + Uy MV, )
(U + UMV T UV + U MV )
(VULUVEz) 4+ (2, VoM U U, MV o)
A+, VUL Us MV ) + (2, VoM UL U WV )
0

= x x) + x x

(Ve Vi) + (MVy , MV )
= [V |* + MV, s

assumption

2 2 2
< ol + el =l

f=
=
=

z,
z,

(17)

where we decomposed x = 1 + x5 onto the subspace spanned by V,I' and its orthog-
onal complement in the second to last step.



