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Subdifferential (14+6 Points)
Exercise 1 (4 Points). Let the convex function J : Rn → R∪{∞} be differentiable
at u ∈ int(dom(J)). Show that

∂J(u) = {∇J(u)}.

Hint: Use the definition of the subdifferential and the directional derivative. For J
being differentiable at the interior of its domain, some direction v ∈ Rn and some
point u ∈ int(dom(J)) the directional derivative ∂vJ of J is given as

∂vJ(u) := lim
ε→0

J(u+ εv)− J(u)

ε
= lim

ε→0

J(u)− J(u− εv)

ε
= 〈∇J(u), v〉.

Solution. Recall that the subdifferential ∂J(u) of some convex J at u ∈ dom(J) is
given as

{p ∈ Rn : J(v) ≥ J(u) + 〈p, v − u〉, ∀ v ∈ dom(J)} .

Since u ∈ int(dom(J)), we find that for all v ∈ Rn, u + εv ∈ dom(J) for ε small
enough since the interior of a set is open. By the definition of the subdifferential,
we have that if p ∈ ∂J(u) then

J(u+ εv) ≥ J(u) + ε〈p, v〉, J(u− εv) ≥ J(u)− ε〈p, v〉,

for all v ∈ Rn and ε small enough. This implies that

lim
ε→0

J(u+ εv)− J(u)

ε
≥ 〈p, v〉, lim

ε→0

J(u)− J(u− εv)

ε
≤ 〈p, v〉,

which means (using the hint)

〈∇J(u), v〉 ≥ 〈p, v〉, 〈∇J(u), v〉 ≤ 〈p, v〉

or
〈∇J(u)− p, v〉 ≥ 0, 〈∇J(u)− p, v〉 ≤ 0
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for all v ∈ Rn. For the particular choice of v := ∇J(u)− p we have that

〈∇J(u)− p,∇J(u)− p〉 = ‖∇J(u)− p‖22 = 0

which means p = ∇J(u). Clearly, ∂J(u) is non-empty (and bounded) since u ∈
int(dom(x)) implies u ∈ ri(dom(x)) (see Thm. Subdifferentiability). Together this
concludes the proof.

Exercise 2 (6 Points). Compute the subdifferential of norms in Euclidean space:

• Let ‖·‖ be a norm on an Euclidean space E, and ‖·‖∗ its dual norm defined as

‖p‖∗ = sup
‖x‖≤1

〈p, x〉,

prove that
∂ ‖·‖ (x) = {p ∈ E : 〈p, x〉 = ‖x‖ , ‖p‖∗ ≤ 1}. (1)

Hint: For x 6= 0, we have a generalized Cauchy-Schwarz inequality:

〈x, y〉 = ‖x‖ 〈 x
‖x‖

, y〉 ≤ ‖x‖ · sup
‖z‖≤1
〈z, y〉 = ‖x‖ ‖y‖∗ , ∀x, y ∈ E. (2)

• Using the result above, compute the subdifferential of the following functions:

– J : Rn → R, J(u) = ‖u‖1.
– J : Rn → R, J(u) = ‖u‖2.
– J : Rn → R, J(u) = ‖u‖∞.

Solution.

• If x = 0 and assume p is one of the subdifferential, we have

p ∈ ∂ ‖·‖ (0)⇔ 〈p, y〉 ≤ ‖y‖ ,∀y ∈ E

⇔ 〈p, y〉
‖y‖

≤ 1, ∀y 6= 0

⇔ sup
y 6=0

〈p, y〉
‖y‖

≤ 1

⇔ sup
‖y‖=1

〈p, y〉 ≤ 1⇔ ‖p‖∗ ≤ 1

For x 6= 0, let p ∈ E with 〈p, x〉 = ‖x‖, ‖p‖∗ ≤ 1. Then, using the generalized
Cauchy-Schwarz inequality (Eq. 2), we have

〈p, y − x〉+ ‖x‖ = 〈p, y〉 − 〈p, x〉+ ‖x‖ = 〈p, y〉 ≤ ‖y‖ ‖p‖∗ ≤ ‖y‖ ,∀y ∈ E.

Hence p ∈ ∂ ‖·‖ (x). Conversely take p ∈ ∂ ‖·‖ (x). Then we have

〈p, y − x〉+ ‖x‖ ≤ ‖y‖ ,∀y ∈ E
⇔ ‖x‖ − 〈p, x〉+ sup

y
〈p, y〉 − ‖y‖ ≤ 0 (3)
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The supremum evaluates as

sup
y
〈p, y〉 − ‖y‖ =

{
0, ‖p‖∗ ≤ 1

∞, otherwise.
.

We show this as the following. Assume ‖p‖∗ > 1. Hence there is some vector
z ∈ E, ‖z‖ ≤ 1 and 〈p, z〉 > 1. It can be seen that the above supremum is
unbounded, i.e. take some y = tz, t(〈p, z〉 − ‖z‖)→∞ for t→∞. Now take
‖p‖∗ ≤ 1, then we have 〈p, y〉−‖y‖ ≤ ‖y‖ (‖p‖∗−1) ≤ 0, where equality holds
for y = 0.

Furthermore, we have

0 ≥ −〈p, x〉+ ‖x‖ ≥ −‖x‖ ‖p‖∗ + ‖x‖ = ‖x‖ (1− ‖p‖∗) ≥ 0

Hence −〈p, x〉+ ‖x‖ = 0 which implies ‖x‖ = 〈p, x〉.

• The dual norm of ‖·‖1 is clearly ‖·‖∞ and vice versa. Hence,

∂ ‖·‖1 (x) = {p ∈ Rn : ‖p‖∞ ≤ 1, 〈p, x〉 = ‖x‖1},

=

{
p ∈ Rn :

{
pi ∈ [−1, 1], if xi = 0

pi = sign(xi), otherwise.

}
.

(4)

∂ ‖·‖∞ (x) = {p ∈ Rn : ‖p‖1 ≤ 1, 〈p, x〉 = ‖x‖∞}. (5)

Also, it is easy to show that the dual norm of ‖·‖2 is ‖·‖2 itself. Thus

∂ ‖·‖2 (x) = {p ∈ Rn : ‖p‖2 ≤ 1, 〈p, x〉 = ‖x‖2}

=

{
p ∈ Rn :

{
pi ∈ B(0, 1), if x = 0

p = x
‖x‖2

, otherwise.

}
,

(6)

where B(0, 1) = {p ∈ Rn : ‖p‖2 ≤ 1} denotes the unit ball around the origin
according to the Euclidean metric.

Exercise 3 (4 points). Given b ∈ Rm, A ∈ Rm×n with linearly independent rows,
show that the normal cone NC of the linear-inequality constraints

C = {u ∈ Rn : Au ≤ b, } (7)

is
NC(u) = {A>λ : λ ≥ 0, λi = 0 if (Au− b)i < 0}. (8)

Solution. Recall that by definition NC(u) = {p ∈ Rn : 〈p, v−u〉 ≤ 0 for all v ∈ C}
for given u ∈ C.

Denote S = {A>λ : λ ≥ 0, λi = 0 if (Au− b)i < 0}.
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• First we prove that S ⊆ NC(u):
Let p1 = A>λ1 ∈ S, then

∀v ∈ C, 〈p1, v − u〉 = 〈λ1, A(v − u)〉 ≤ 0, (9)

because component-wise it holds for (λ1)i = 0, and when (λ1)i > 0 we have
(b− Au)i = 0, thus (A(v − u))i ≤ (b− Au)i = 0.
Hence we have p1 ∈ NC(u) and S ⊆ NC(u).

• Then we prove that NC(u) ⊆ S:
Let p2 ∈ NC(u), since rows of A are independent, there exists a unique pair of
(λ2, µ2) ∈ Rm × Rn such that p2 can be decomposed as follows:

p2 = A>λ2 + µ2, with Aµ2 = 0 (10)

where A>λ2 is the projection of p2 onto the subspace of Rn spanned by the
rows of A and µ2 is the component in the null space of A.
Since u+ µ2 ∈ C, we have that

〈p2, (u+ µ2)− u〉 = 〈λ2, Aµ2〉+ 〈µ2, µ2〉 = 0 + ‖µ2‖2 ≤ 0, (11)

Thus the component in null space µ2 = 0.
Let a ∈ R and ei ∈ Rm be the i-th vector in the canonical basis. Since rows
of A are independent, we can find v0 ∈ C such that Av0 = Au+ aei so long as
Au+ aei ≤ b, in which case we have

〈p2, v0 − u〉 = 〈λ2, A(v0 − u)〉 = 〈λ2, aei〉 = a(λ2)i ≤ 0. (12)

Since for a ≤ 0, Au+ aei ≤ b always holds, we must have (λ2)i ≥ 0 for Eq. 12
to hold.
Furthermore, when (Au)i < bi, a can also take any positive value up to bi −
(Au)i. In this case, for Eq. 12 to hold, we must have (λ2)i = 0.
The above reasoning shows that p2 ∈ S, which proves that NC(u) ⊆ S.

Thus we have proved that NC(u) = S = {A>λ : λ ≥ 0, λi = 0 if (Au− b)i < 0}.

Exercise 4 (6 points). Compute the subdifferential of nuclear norm:

X ∈ Rn×n 7→ ‖X‖nuclear =
∑
i

σi(X),

i.e., sum of singular values.
Hint: Show that the subdifferential at point X ∈ Rn×n with s ≥ 0 zero singular
values is given as

∂ ‖·‖nuc (X) =
{
U1V

>
1 + U2MV >2 : M ∈ Rs×s, ‖M‖spec ≤ 1

}
, (13)

where U =
[
U1 U2

]
and V =

[
V1 V2

]
are given by the singular value decomposition

of X = UΣV >, with U1 and V1 having n− s columns. Furthermore ‖·‖spec denotes
the spectral norm, i.e., the largest singular value.
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Solution. Denote by 〈X, Y 〉 = tr(XTY ). First we show that the dual norm of the
nuclear norm is the spectral norm, i.e.,

sup∑
i σi(Y )≤1

〈X, Y 〉 = σ1(X).

Clearly, sup∑
i σi(Y )≤1 〈X, Y 〉 ≥ σ1(X) since the supremum is bigger than the func-

tion at the feasible candidate Y = u1v
T
1 (for X = UΣV T ) for which the supremum

evaluates to 〈u1vT1 , UΣV T 〉 = σ1(X). The other inequality (again with X = UΣV T )
follows from von Neumann’s trace inequality tr(AB) ≤

∑n
i=1 σi(A)σi(B).

sup∑
i σi(Y )≤1

〈Y,X〉 = sup∑
i σi(Y )≤1

tr(Y TX) ≤ sup∑
i σi(Y )≤1

n∑
i=1

σi(X)σi(Y ) = σ1(X).

(14)
Hence, from the previous solution, it then follows that

∂ ‖X‖nuc = {Y ∈ Rn×n : 〈X, Y 〉 = ‖X‖nuc , ‖Y ‖spec ≤ 1}. (15)

We finish the proof by showing that (13) and (15) are the same. Denote by X =
U1ΣV

T
1 denote the compact SVD of X.

First we take some Y that satisfies (15), i.e., 〈X, Y 〉 = ‖X‖nuc and ‖Y ‖spec ≤ 1

and show it is in (13). For that, consider the subspace S = {U1WV T
1 : W ∈ Rr×r}

where r = n− s and its orthogonal complement S⊥ = {U2MV T
2 : M ∈ Rs×s}. Then

we can write Y = ΠS(Y ) + ΠS⊥(Y ) = U1WV T
1 + U2MV T

2 for some W and M .
Since we have

〈Y,X〉 = 〈U1WV T
1 + U2MV T

2 , U1ΣV
T
1 〉 = 〈U1WV T

1 , U1ΣV
T
1 〉

= tr(V T
1 W

TUT
1 UΣV1) = tr(W TΣ)

assumption
= tr(Σ)

(16)

we can conclude that W = I and hence Y = U1V
T
1 + U2MV T

2 . Since projections
always have Lipschitz constant less or equal one we have that

‖M‖spec =
∥∥U2MV T

2

∥∥
spec = ‖ΠS⊥(Y )‖spec ≤ ‖Y ‖spec

assumption
≤ 1,

where we used the unitary invariance of the spectral norm in the first equality.
Conversely take some U1V

T
1 + U2MV T

2 from (13) with ‖M‖spec ≤ 1 and X =

U1ΣV
T
1 . We show that it satisfies (15):

〈U1V
T
1 + U2MV T

2 , U1ΣV
T
1 〉 = tr(V1UT

1 UΣV T
1 ) = tr(Σ) = ‖X‖nuc .
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For the spectral norm we use the fact that if ‖Ax‖2 ≤ ‖x‖2, then ‖A‖spec ≤ 1.∥∥(U1V
T
1 + U2MV T

2 )x
∥∥2 = 〈U1V

T
1 x+ U2MV T

2 x, U1V
T
1 x+ U2MV T

2 x〉
= 〈x, (U1V

T
1 + U2MV T

2 )T (U1V
T
1 + U2MV T

2 )x〉
= 〈x, (V1UT

1 U1V
T
1 x〉+ 〈x, V2MTUT

2 U2MV T
2 x〉

+〈x, V1UT
1 U2MV T

2 x〉+ 〈x, V2MTUT
2 U1V

T
1 x〉︸ ︷︷ ︸

=0

= 〈V T
1 x, V

T
1 x〉+ 〈MV T

2 x,MV T
2 x〉

=
∥∥V T

1 x1
∥∥2 +

∥∥MV T
2 x2

∥∥
assumption
≤ ‖x1‖2 + ‖x2‖2 = ‖x‖2 ,

(17)

where we decomposed x = x1 +x2 onto the subspace spanned by V T
2 and its orthog-

onal complement in the second to last step.
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