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Prox and Gradient descent (8 + 4 Points)

Exercise 1 (6 Points). Let ) € R™™ be a positive definite symmetric matrix.
Prove the following inequality for any vector x € R"
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where A\, and \; are, respectively, the largest and smallest eigenvalues of Q).

Solution. Since () € R™*" is symmetric positive definite, we can write it as ) =
UAUT, where A is a n x n diagonal matrix containing the eigenvalues of Q.
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where y = U2 € R™. (y can attain any value in R™ since U is full rank.)

(Note: the change of variable here is necessary, since (x, UAU "z) = tr(U "2z "UN)
but tr(U za"UA) # tr(U"zx" AU) in general. The solution in the previous year
was wrong and I was misled by it during the exercise session, sorry for that ...)

We used the fact that (z,UAUTz) = (UTz, AU z) = (y,Ay) and |jz|* =
(2,00 z) = (UT2,UT2) = [y,

Now let & =42/ ||ly||°, then we have
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Since & > 0 and ) . ;& = 1 we have a ratio of two functions involving convex
combinations.



Let f(x) = 1/z, and X := >, &N Then ¢(€) = f()\). Furthermore, take the
affine function

1 53—
A) = — + 22 (), — A
9N =+ A=)

Since f is convex (on R™) we have that f(A) < g(A),¥A > 0. Then
= Z&f()\i) < Zfig()\i) = SJ(Z &idi) = g(A)

Then we have
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Exercise 2 (6 Points). Let @ € R™*" be symmetric positive definite, and b € R™.
As in the previous exercise, denote the eigenvalues of Q as 0 < A\ < Ay < ... < A\,
Consider the quadratic function f: R" — R, x > %xTQx — b"z and show gradient
descent with exact line search has the following convergence property:
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where z* € R™ denotes the global minimizer of f.
Hint: use the inequality from exercise 1.
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Solution. From the lecture we know that the line search procedure has the solution
v
IV f(@*)]lg,

Furthermore, note that Vf(2*) = Qz* — b = Q(2* — x*). We have the following
equalities:

™ = argmin_ f(z* — 7V f(2F)) =

Hl,k' —x*

é: <xk_x*vQ(Ik_x*)> = <Q(l’ -z ) Q Q(IL’ —z)) = va HQ 1
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o = atllg = la**t = 2l = [l = o[l = lla* = eV £t = 2*l =

%1, = 262*, 2700 + 127115, — (||2* = 7V F (@), — 202* — 7V (), 27)g + [|27]]5) =

2]l = lla* = mv £a*)][q - 2Tk<Vf( H),a%q =
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Hence, using exercise 1, we arrive at the estimate from the lecture W
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