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Prox and Gradient descent (8+4 Points)

Exercise 1 (6 Points). Let f : R™ — R be continuously differentiable and bounded
from below. Consider the scaled gradient descent iteration:

xkz—i—l — .Tk _ Tk(Hk)_1Vf($k) (1)

For each k, assume that 7% > 0, V. f(2*) # 0, and H* € R™*" is symmetric positive
definite.

1. Prove that for given z* and HF, there exists some 7%
™ € (0, 7%] will fulfill the following Armijo condition:

> 0 such that any

FEMHTR)) < F@) + e (V ("), () = 2F), (2)
for some constant 0 < ¢ < 1.

2. Assume that for each k the condition (2) is satisfied with some chosen 7% > 0.
In addition, assume that liminf;_ ., 7% = C; > 0 and lim SUD s 00 )\max(Hk) =
Cy < 0. Prove limy_,oo V f(2F) = 0.

Solution. 1. Consider both sides of (2) as functions of 7*. Then we have LHS(0) =
RHS(0) and LHS'(0) — RHS'(0) = (c — 1)(Vf(a¥),(H*) 'V f(z*)) < 0.
Hence LHS(7%) < RHS(7%) as 7% — 0*. On the other hand, since LHS(:)
is bounded from below and RHS(+) is strictly decreasing on [0, c0), they must
intersect at some 7% € (0,00). Let 7% > 0 be the first of such points, then
LHS(7%) < RHS(7%) for all 7% € (0, 7).

2. Note that {f(2*)} is a non-increasing sequence that is bounded from below.
For sufficiently large k, we have 7% > (/2 and Apax (H*) < 2C5, and therefore
G IVFEHE < et (Vf(ah), (HY) 'V f(ah)) < fab) - fa*) = 0.
Hence, V f(z%) — 0.



Exercise 2 (6 points). We want to show that the proximal operator of the nuclear
norm is the proximal operator of the ¢;-norm applied to the singular values of the
input argument. Formally, let Y € R™" and let Y = UXV " be the singular value
decomposition of Y. Our goal is to prove that

prox, (V) = Udiag({(o; — 7) 4}V,

where diag({o; — 7} ) := diag({max{0, 0; — 7}}) = prox, |, ({o:}) is the shrinkage
(or soft thresholding) operator applied to the singular values o; of Y.
For this, we will argue in 2 steps:

1. In general, the proximal operator is well-defined and returns a unique min-
imizer, why? Give your argument. In our case, denote X = prox, (Y),
what do we have for the optimality condition?

2. Show that X = Udiag({(c; — 7)4+})VT verifies the optimality condition, and
argue that this concludes our proof.

Hint: for step 2, recall from sheet 3 that the subdifferential at point X € R™*"
with s > 0 zero singular values is given as

O e (X) = { OV + MV, M € R, | M|, < 1, (3)

where H'||SpeC denotes the spectral norm, i.e., the largest singular value.
Rewriting the expressions of X and Y with an appropriately defined decompo-
sition V' = [V} V3], U = [U; Us] can be helpful.

Solution.

1. Let Y € R™™™. We are interested in the solution of
1
argminy o || X — Y7+ 71X e

whose solution is unique since the above problem is strictly convex. The
optimality condition of the problem is given as

0eX —Y + 70| - [luuc(X). (4)

where 0| - ||nuc(X) is the subdifferential of the nuclear norm at X characterized
on exercise sheet 3.

2. Our aim is to show that X := Udiag({(c; — 7)4})V T meets the optimality
condition. To this end we decompose V = [V} V3], U = [U; U] and ¥ =
1 0
[0 Ez] so that
Y = U5, V) + UpS, V',



where 3, contains all singular values o; > 7 and Y, all singular values o; < 7.
We may then write X as

X = Udiag({(o; = 7). D)V = Uy (81 —71) V}" + Uy diag({0}) V'
;>0 ;=0

We will now show that X meets (4): Y — X is given as
Y — X =70V, + U150,
By construction ||23s|spec < 1. And therefore and due to sheet 3

Y — X €70 - ||nue(X)



