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Prox and Gradient descent (8+4 Points)
Exercise 1 (6 Points). Let f : Rn → R be continuously differentiable and bounded
from below. Consider the scaled gradient descent iteration:

xk+1 = xk − τ k(Hk)−1∇f(xk). (1)

For each k, assume that τ k > 0, ∇f(xk) 6= 0, and Hk ∈ Rn×n is symmetric positive
definite.

1. Prove that for given xk and Hk, there exists some τ̄ k > 0 such that any
τ k ∈ (0, τ̄ k] will fulfill the following Armijo condition:

f(xk+1(τ k)) ≤ f(xk) + c
〈
∇f(xk), xk+1(τ k)− xk

〉
, (2)

for some constant 0 < c < 1.

2. Assume that for each k the condition (2) is satisfied with some chosen τ k > 0.
In addition, assume that lim infk→∞ τ

k = C1 > 0 and lim supk→∞ λmax(H
k) =

C2 <∞. Prove limk→∞∇f(xk) = 0.

Solution. 1. Consider both sides of (2) as functions of τ k. Then we have LHS(0) =
RHS(0) and LHS′(0) − RHS′(0) = (c − 1)

〈
∇f(xk), (Hk)−1∇f(xk)

〉
< 0.

Hence LHS(τ k) < RHS(τ k) as τ k → 0+. On the other hand, since LHS(·)
is bounded from below and RHS(·) is strictly decreasing on [0,∞), they must
intersect at some τ k ∈ (0,∞). Let τ̄ k > 0 be the first of such points, then
LHS(τ̄ k) ≤ RHS(τ̄ k) for all τ k ∈ (0, τ̄ k].

2. Note that {f(xk)} is a non-increasing sequence that is bounded from below.
For sufficiently large k, we have τ k ≥ C1/2 and λmax(H

k) ≤ 2C2, and therefore
cC1

2
1

2C2
‖∇f(xk)‖22 ≤ cτ k

〈
∇f(xk), (Hk)−1∇f(xk)

〉
≤ f(xk) − f(xk+1) → 0.

Hence, ∇f(xk)→ 0.
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Exercise 2 (6 points). We want to show that the proximal operator of the nuclear
norm is the proximal operator of the `1-norm applied to the singular values of the
input argument. Formally, let Y ∈ Rn×n and let Y = UΣV > be the singular value
decomposition of Y . Our goal is to prove that

proxτ‖·‖nuc
(Y ) = Udiag({(σi − τ)+})V >,

where diag({σi − τ}+) := diag({max{0, σi − τ}}) = proxτ‖·‖1({σi}) is the shrinkage
(or soft thresholding) operator applied to the singular values σi of Y .

For this, we will argue in 2 steps:

1. In general, the proximal operator is well-defined and returns a unique min-
imizer, why? Give your argument. In our case, denote X̂ = proxτ‖·‖nuc

(Y ),
what do we have for the optimality condition?

2. Show that X̂ = Udiag({(σi − τ)+})V > verifies the optimality condition, and
argue that this concludes our proof.

Hint: for step 2, recall from sheet 3 that the subdifferential at point X ∈ Rn×n

with s ≥ 0 zero singular values is given as

∂ ‖·‖nuc (X) =
{
U1V

>
1 + U2MV >2 : M ∈ Rs×s, ‖M‖spec ≤ 1

}
, (3)

where ‖·‖spec denotes the spectral norm, i.e., the largest singular value.
Rewriting the expressions of X and Y with an appropriately defined decompo-

sition V = [V1 V2], U = [U1 U2] can be helpful.

Solution.

1. Let Y ∈ Rn×n. We are interested in the solution of

argminX
1

2
‖X − Y ‖2F + τ‖X‖nuc.

whose solution is unique since the above problem is strictly convex. The
optimality condition of the problem is given as

0 ∈ X̂ − Y + τ∂‖ · ‖nuc(X̂). (4)

where ∂‖·‖nuc(X) is the subdifferential of the nuclear norm at X characterized
on exercise sheet 3.

2. Our aim is to show that X̂ := Udiag({(σi − τ)+})V > meets the optimality
condition. To this end we decompose V = [V1 V2], U = [U1 U2] and Σ =[
Σ1 0
0 Σ2

]
so that

Y = U1Σ1V
>
1 + U2Σ2V

>
2 ,
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where Σ1 contains all singular values σi > τ and Σ2 all singular values σi ≤ τ .
We may then write X̂ as

X̂ = Udiag({(σi − τ)+})V > = U1 (Σ1 − τI)︸ ︷︷ ︸
σi>0

V >1 + U2 diag({0})︸ ︷︷ ︸
σi=0

V >2 .

We will now show that X̂ meets (4): Y − X̂ is given as

Y − X̂ = τ(U1V
>
1 + U2

1
τ
Σ2V

>
2 ).

By construction ‖ 1
τ
Σ2‖spec ≤ 1. And therefore and due to sheet 3

Y − X̂ ∈ τ∂‖ · ‖nuc(X̂)
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