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Theory: PDHG and ADMM (8+4 Points)
Exercise 1 (6 Points). Let S ∈ Rm×m, T ∈ Rn×n be 2 symmetric positive definite
(spd) matrices and K ∈ Rn×m, show that

M =

[
S −K>
−K T

]
is spd ⇔ S −K>T−1K is spd . (1)

Hint: Consider the Schur complement of M and prove that a block diagonal matrix
is spd if and only if all of its diagonal blocks are spd.

Solution. Since T is spd thus invertible, using the Schur complement we have that:

M =

[
S −K>
−K T

]
= FBF>, (2)

where

F =

[
Im −K>T−1
0 In

]
is full rank (i.e. invertible) since det(F ) = 1 (3)

and
B =

[
S −K>T−1K 0

0 T

]
is block diagonal and symmetric. (4)

Thus

M is positive definite
⇐⇒ ∀X ∈ Rm+nX>MX ≥ 0 and (X>MX = 0⇒ X = 0)

⇐⇒ ∀X ∈ Rm+n(F>X)>B(F>X) ≥ 0 and ((F>X)>B(F>X) = 0⇒ (F>X) = 0)

⇐⇒ B is positive definite

since F is invertible. This shows that M is spd ⇔ B is spd.
Let C = S −K>T−1K. B being block diagonal with symmetric diagonal blocks

C and T . Given that T is an spd matrix. We will verify that B is spd if and only
if C is spd:
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• “⇒”:

B is spd
⇒ ∀X1 ∈ Rm, (X1 0)B(X1 0)> = X1CX

>
1 ≥ 0 with equality only when X1 = 0

⇒ C = S −K>T−1K is spd

• “⇐”:
Since T is spd, we have that

C is spd

⇒ ∀X1 ∈ Rm,∀X2 ∈ Rn, (X1 X2)

[
C 0
0 T

]
(X1 X2)

> ≥ 0 with equality

only when X1 = 0 and X2 = 0

⇒ B is spd

This shows that B is spd ⇔ C = S −K>T−1K is spd.
The above reasoning concludes that M is spd ⇔ S −K>T−1K is spd.

Exercise 2 (6 Points). (ADMM update derivation for Robust PCA): we consider the
following optimization problem (the programming exercise below gives the context):

argminA∈Rn1×n2
B∈Rn1×n2
M∈Rn1×n2

‖A‖nuc + λ ‖B‖1 + δ{‖M − Z‖fro ≤ ε}+ δ{A+B −M = 0} (5)

where Z ∈ Rn1×n2 is a given matrix, ‖‖fro is the Frobenius norm, ‖‖nuc is the nuclear
norm and δ{} is the indicator function.

The M here can be considered as a replacement variable and we introduce the
Lagrangian multiplier Y to construct the augmented Lagrangian:

L(A,B,M, Y ) = ‖A‖nuc+λ ‖B‖1+δ{‖M − Z‖fro ≤ ε}+〈Y,A+B−M〉+ρ
2
‖A+B −M‖2fro

(6)
You are asked to write down the ADMM updates to solve above augmented La-
grangian function on A,B,M, Y .

Hint: This is a more general form than what we see in the lecture. Nevertheless,
you can write down the iterative updates for A,B,M, Y sequentially similar to the
one in the lecture.

Solution. Applying ADMM directly, the updating step at k-th iteration is:

1. Update A

Ak+1 = argminA ‖A‖nuc + 〈Y
k, A〉+ ρ

2

∥∥A+Bk −Mk
∥∥2

fro

= argminA
ρ

2

∥∥∥∥A−Mk +Bk +
Y k

ρ

∥∥∥∥2
fro

+ ‖A‖nuc

= prox 1
ρ
‖·‖nuc

(Mk −Bk − Y k

ρ
)
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It is shown that the proximal operator of nuclear norm is:

proxτ‖·‖nuc
(H) = Udiag({σi − τ}+)V >,

where diag({σi − τ}+) := diag({max{0, σi − τ}}) is the shrinkage (or soft
thresholding) operator applied to the singular values σi of H and Udiag(σi)V >

is the singular value decomposition ofH. Assume (Mk−Bk−Y k

ρ
) = Udiag(σi)V >,

using above formula, we get:

Ak+1 = Udiag({σi −
1

ρ
}+)V >.

2. Update B

Bk+1 = argminB λ ‖B‖1 + 〈Y
k, B〉+ ρ

2

∥∥Ak+1 +B −Mk
∥∥2

fro

= argminB
ρ

2λ

∥∥∥∥B −Mk + Ak+1 +
Y k

ρ

∥∥∥∥2
fro

+ ‖B‖1

= proxλ
ρ
‖·‖1

(Mk − Ak+1 − Y k

ρ
)

B̃:=Mk−Ak+1−Y
k

ρ⇒ Bk+1
ij =


B̃ij +

λ
ρ
, if B̃ij < −λ

ρ

B̃ij − λ
ρ
, if B̃ij >

λ
ρ

0, otherwise

3. Update M

Mk+1 = argminM δ{‖M − Z‖fro ≤ ε} − 〈Y k,M〉+ ρ

2

∥∥Ak+1 +Bk+1 −M
∥∥2

fro

= argminM
ρ

2

∥∥∥∥M − Ak+1 −Bk+1 − Y k

ρ

∥∥∥∥2
fro

+ δ{‖M − Z‖fro ≤ ε}

= prox 1
ρ
δ{‖·−Z‖fro≤ε}

(Ak+1 +Bk+1 +
Y k

ρ
)

= proj‖·−Z‖fro≤ε(A
k+1 +Bk+1 +

Y k

ρ
)

4. Update Y
Y k+1 = Y k + ρ(Ak+1 +Bk+1 −Mk+1)
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Programming: Robust Principal Component Analy-
sis(Due date: 07.01.2019) (12 Points)
Exercise 3 (12 Points). Given several frames from a video, your task is to separate
the foreground and background by solving an optimization problem: Assume that
each frame is an image with m × n pixels and this video has n2 number of frames.
By vectorizing each frame, we can create a matrix Z ∈ Rn1×n2 , where n1 = m× n.

Inspired by the idea of PCA, we want to decompose the original matrix Z into
two matrices A and B with the same dimension. The matrix A should contain
the information of background pixels while B should contain the information of
foreground ones. We hope that A+B will recover the original video Z, i.e. A+B =
Z. However, considering the noise in Z, an intermediate matrix M := A + B is
introduced. Instead of recovering the exact Z, we relax the constrain by requiring
‖M − Z‖fro ≤ ε, where ε is a predefined variable controlling the trade-off between
the fidelity of the decomposition and the robustness to the noise.

Therefore, we could construct the following optimization problem:

argminA∈Rn1×n2
B∈Rn1×n2
M∈Rn1×n2

‖A‖nuc + λ ‖B‖1 + δ{‖M − Z‖fro ≤ ε}+ δ{A+B −M = 0} (7)

where ‖‖fro is the Frobenius norm, ‖‖nuc is the nuclear norm and δ{} is the indicator
function.

Since A contains background of each frame and the background keeps the same,
A should be a low-rank matrix. Therefore, the nuclear norm is used to constraint
A to be a low-rank matrix. The l1 norm of B requires B to be sparse.

You are asked to apply ADMM to solve this energy function. The M here can
be considered as a replacement variable and we introduce the Lagrangian multiplier
Y to construct the augmented Lagrangian:

L(A,B,M, Y ) = ‖A‖nuc+λ ‖B‖1+δ{‖M − Z‖fro ≤ ε}+〈Y,A+B−M〉+ρ
2
‖A+B −M‖2fro

(8)
Then use ADMM to solve:

argminA,B,M,Y L(A,B,M, Y ) (9)
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