8. Clustering (cont.)

EM Algorithm for GMM

- 1.Initialize means μ_k covariance matrices Σ_k and mixing coefficients π_k
- 2.Compute the initial log-likelihood $\log p(X \mid \boldsymbol{\pi}, \boldsymbol{\mu}, \boldsymbol{\Sigma})$
- 3. E-Step. Compute the responsibilities:

$$\gamma(z_{nk}) = \frac{\pi_k \mathcal{N}(\mathbf{x}_n \mid \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)}{\sum_{j=1}^K \pi_j \mathcal{N}(\mathbf{x}_n \mid \boldsymbol{\mu}_j, \boldsymbol{\Sigma}_j)}$$

4. M-Step. Update the parameters:

$$\mu_k^{\text{new}} = \frac{\sum_{n=1}^{N} \gamma(z_{nk}) \mathbf{x}_n}{\sum_{n=1}^{N} \gamma(z_{nk})} \quad \Sigma_k^{\text{new}} = \frac{\sum_{n=1}^{N} \gamma(z_{nk}) (\mathbf{x}_n - \boldsymbol{\mu}_k^{\text{new}}) (\mathbf{x}_n - \boldsymbol{\mu}_k^{\text{new}})^T}{\sum_{n=1}^{N} \gamma(z_{nk})} \quad \pi_k^{\text{new}} = \frac{1}{N} \sum_{n=1}^{N} \gamma(z_{nk})$$

5. Compute log-likelihood; if not converged go to 3.

EM for GMM: Example

Why is it Called "EM"?

Assume for a moment that we observe X and the binary latent variables Z. The likelihood is then:

$$p(X,Z\mid \boldsymbol{\pi},\boldsymbol{\mu},\boldsymbol{\Sigma}) = \prod_{n=1}^{N} p(\mathbf{z}_n\mid \boldsymbol{\pi}) p(\mathbf{x}_n\mid \mathbf{z}_n,\boldsymbol{\mu},\boldsymbol{\Sigma}) \qquad \text{``Complete-data log-likelihood''}$$

where
$$p(\mathbf{z}_n \mid \boldsymbol{\pi}) = \prod_{k=1}^K \pi_k^{z_{nk}}$$
 and

$$p(\mathbf{x}_n \mid \mathbf{z}_n, \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \prod_{k=1}^K \mathcal{N}(\mathbf{x}_n \mid \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)^{z_{nk}}$$

which leads to the log-formulation:

$$\log p(X, Z \mid \boldsymbol{\pi}, \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \sum_{n=1}^{N} \sum_{k=1}^{K} z_{nk} (\log \pi_k + \log \mathcal{N}(\mathbf{x}_n \mid \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k))$$

Why is it Called "EM"?

Instead of maximizing the joint log-likelihood, we maximize its **expectation** under the latent variable distribution:

$$\mathbb{E}_{Z}[\log p(X, Z \mid \boldsymbol{\pi}, \boldsymbol{\mu}, \boldsymbol{\Sigma})] = \sum_{n=1}^{N} \sum_{k=1}^{K} \mathbb{E}_{Z}[z_{nk}](\log \pi_{k} + \log \mathcal{N}(\mathbf{x}_{n} \mid \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}))$$

Why is it Called "EM"?

Instead of maximizing the joint log-likelihood, we maximize its **expectation** under the latent variable distribution:

$$\mathbb{E}_{Z}[\log p(X, Z \mid \boldsymbol{\pi}, \boldsymbol{\mu}, \boldsymbol{\Sigma})] = \sum_{n=1}^{N} \sum_{k=1}^{K} \mathbb{E}_{Z}[z_{nk}](\log \pi_{k} + \log \mathcal{N}(\mathbf{x}_{n} \mid \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}))$$

where the latent variable distribution per point is:

$$p(\mathbf{z}_n \mid \mathbf{x}_n, \boldsymbol{\theta}) = \frac{p(\mathbf{x}_n \mid \mathbf{z}_n, \boldsymbol{\theta}) p(\mathbf{z}_n \mid \boldsymbol{\theta})}{p(\mathbf{x}_n \mid \boldsymbol{\theta})} \quad \boldsymbol{\theta} = (\boldsymbol{\pi}, \boldsymbol{\mu}, \boldsymbol{\Sigma})$$
$$= \frac{\prod_{l=1}^{K} (\pi_l \mathcal{N}(\mathbf{x}_n \mid \boldsymbol{\mu}_l, \boldsymbol{\Sigma}_l))^{z_{nl}}}{\sum_{j=1}^{K} \pi_j \mathcal{N}(\mathbf{x}_n \mid \boldsymbol{\mu}_j, \boldsymbol{\Sigma}_j)}$$

Observations

- Compared to K-means, points can now belong to both clusters (soft assignment)
- In addition to the cluster center, a covariance is estimated by EM
- Initialization is the same as used for K-means
- Number of iterations needed for EM is much higher
- Also: each cycle requires much more computation
- Therefore: start with K-means and run EM on the result of K-means (covariances can be initialized to the sample covariances of K-means)
- EM only finds a local maximum of the likelihood!

Rep.: From MLE to MAP (Regression)

In MLE, we searched for parameters \mathbf{w} , that maximize the data likelihood. Now, we assume a Gaussian *prior*: $p(\mathbf{w} \mid \sigma_2) = \mathcal{N}(\mathbf{w}; \mathbf{0}, \sigma_2 I)$

Using this, we can compute the posterior (Bayes):

"Maximum A-Posteriori Estimation (MAP)"

Generalization: The Bayesian Approach

This idea can be generalized:

- Given a data-dependent likelihood term
- Find an appropriate prior distribution
- Multiply both and obtain the (unnormalized) posterior from Bayes rule
- Main benefit: less overfitting

However:

• How should we define the prior?

Often used principle: Conjugacy

Conjugate Priors

A conjugate prior distribution allows to represent the posterior in the same functional (closed) form as the prior, e.g.:

10

Common pairs of likelihood and conjugate priors are:

Likelihood	Conjugate Prior
Normal with known variance	Normal
Binomial	Beta
Multinomial	Dirichlet
Multivariate Normal	Normal-inverse Wishart

Multinomial

- Given K clusters and probabilities of these clusters π_1, \dots, π_K where $\sum_{k=1}^K \pi_k = 1$
- The probability that out of N samples m_k are in cluster k is:

$$p(m_1, \dots, m_K \mid \boldsymbol{\pi}, N) = {N \choose m_1 \cdots m_K} \prod_{k=1}^K \mu_k^{m_k}$$

- This is called the multinomial distribution
- In our case:

$$p(Z \mid \boldsymbol{\pi}) = \prod_{n=1}^{N} \prod_{k=1}^{K} \mu_k^{z_{nk}} = \prod_{k=1}^{K} \mu_k^{m_k}$$

The Dirichlet Distribution

The Dirichlet distribution is defined as:

$$\operatorname{Dir}(\boldsymbol{\mu} \mid \boldsymbol{\alpha}) = \frac{\Gamma(\alpha_0)}{\Gamma(\alpha_1) \cdots \Gamma(\alpha_K)} \prod_{k=1}^K \mu_k^{\alpha_k - 1} \qquad \alpha_0 = \sum_{k=1}^K \alpha_k$$

$$0 \le \mu_k \le 1 \qquad \sum_{k=1}^K \mu_k = 1$$

- It is the conjugate prior for the multinomial distribution
- There, the parameter α can be interpreted as the effective number of observations for every state

The simplex for K=3

Some Examples

- α_0 controls the strength of the distribution ("peakedness")
- α_k control the location of the peak

$$\alpha = (20, 2, 2)$$

$$\alpha = (0.1, 0.1, 0.1)$$

The full posterior of the Gaussian Mixture Model is

$$p(X, Z, \boldsymbol{\mu}, \Sigma, \boldsymbol{\pi}) = p(X \mid Z, \boldsymbol{\mu}, \Sigma) p(Z \mid \boldsymbol{\pi}) p(\boldsymbol{\pi} \mid \alpha) p(\boldsymbol{\mu}, \Sigma \mid \boldsymbol{\lambda})$$

data likelihood (Gaussian)

correspondence prob. (Multinomial)

mixture prior (Dirichlet)

parameter prior (Gauss-IW)

Given this model, we can create new samples:

- 1. Sample π , θ_k from priors
- 2. Sample corresp. z_i
- 3. Sample data point x_i

The full posterior of the Gaussian Mixture Model is

$$p(X, Z, \boldsymbol{\mu}, \Sigma, \boldsymbol{\pi}) = p(X \mid Z, \boldsymbol{\mu}, \Sigma) p(Z \mid \boldsymbol{\pi}) p(\boldsymbol{\pi} \mid \alpha) p(\boldsymbol{\mu}, \Sigma \mid \boldsymbol{\lambda})$$

data likelihood (Gaussian)

correspondence prob. (Multinomial)

mixture prior (Dirichlet)

parameter prior (Gauss-IW)

$$\boldsymbol{\pi} \sim \operatorname{Dir}(\frac{\alpha}{K}, \dots, \frac{\alpha}{K})$$

$$\mathbf{z}_i \sim \mathrm{Mult}(\boldsymbol{\pi})$$

$$\boldsymbol{\theta}_k \sim \text{NIW}(\boldsymbol{\lambda})$$

$$\mathbf{x}_i \sim \mathcal{N}(oldsymbol{ heta}_{\mathbf{z}_i})$$

The full posterior of the Gaussian Mixture Model is

$$p(X, Z, \boldsymbol{\mu}, \Sigma, \boldsymbol{\pi}) = p(X \mid Z, \boldsymbol{\mu}, \Sigma) p(Z \mid \boldsymbol{\pi}) p(\boldsymbol{\pi} \mid \alpha) p(\boldsymbol{\mu}, \Sigma \mid \boldsymbol{\lambda})$$

data likelihood (Gaussian)

correspondence prob. (Multinomial)

mixture prior (Dirichlet)

parameter prior (Gauss-IW)

An equivalent formulation of this model is this:

- 1. Sample π , θ_k from priors
- 2.Sample params $\bar{\theta}_i$ from a discrete dist. G
- 3. Sample data point x_i

What is the difference in that model?

- ullet there is one parameter $ar{ heta}_i$ for each observation \mathbf{x}_i
- intuitively: we first sample the location of the cluster and then the data that corresponds to it

In general, we use the notation:

$$m{\pi} \sim ext{Dir}(rac{lpha}{K}\mathbf{1})$$
 $m{ heta}_k \sim ext{H}(m{\lambda})$ "Base distribution"
 $ar{m{ heta}}_i \sim ext{G}(m{\pi}, m{ heta}_k)$ where $G(m{\pi}, m{ heta}_k) = \sum_{K} \pi_k \delta(m{ heta}_k, ar{m{ heta}}_i)$

However: We need to know K

Remember: Generating GMM Data

The Dirichlet Process

- So far, we assumed that K is known
- To extend that to infinity, we use a trick:

Definition: A Dirichlet process (DP) is a distribution over probability measures G, i.e. $G(\theta) \ge 0$ and

$$\int G(\theta)d\theta = 1$$
. If for any partition (T_1, \dots, T_K) it holds:

$$(G(T_1),\ldots,G(T_K)) \sim \text{Dir}(\alpha H(T_1),\ldots,\alpha H(T_K))$$

then *G* is sampled from a Dirichlet process.

Notation: $G \sim \mathrm{DP}(\alpha, H)$

where α is the concentration parameter and H is the base measure

Intuitive Interpretation

- Every sample from a Dirichlet distribution is a vector of K positive values that sum up to 1, i.e. the sample itself is a finite distribution
- Accordingly, a sample from a Dirichlet process is an infinite (but still discrete!) distribution

Construction of a Dirichlet Process

- The Dirichlet process is only defined implicitly, i.e.
 we can test whether a given probability measure is
 sampled from a DP, but we can not yet construct
 one.
- A DP can be constructed using the "stickbreaking" analogy:
 - imagine a stick of length 1
 - we select a random number β between 0 and 1 from a Beta-distribution
 - we break the stick at $\pi = \beta$ * length-of-stick
 - we repeat this infinitely often

The Stick-Breaking Construction

formally, we have

$$\beta_k \sim \text{Beta}(1, \alpha)$$

$$eta_k \sim \mathrm{Beta}(1, lpha)$$
 $\pi_k = eta_k \prod_{l=1}^{k-1} (1 - eta_l) = eta_k (1 - \sum_{l=1}^{k-1} \pi_l)$

now we define

$$G(\theta) = \sum_{k=1}^{\infty} \pi_k \delta(\theta_k, \theta)$$
 $\theta_k \sim H$ then: $G \sim \mathrm{DP}(\alpha, H)$

$$\boldsymbol{\theta}_k \sim H$$

then:
$$G \sim \mathrm{DP}(\alpha, H)$$

The Chinese Restaurant Process

- Consider a restaurant with infinitely many tables
- Everytime a new customer comes in, he sits at an occupied table with probability proportional to the number of people sitting at that table, but he may choose to sit on a new table with decreasing probability as more customers enter the room.

The DP for Mixture Modeling

- Using the stick-breaking construction, we see that we can extend the mixture model clustering to the situation where *K* goes to infinity
- The algorithm can be implemented using Gibbs sampling

Questions

 What if the clusters can not be approximated well by Gaussians?

 Can we formulate an algorithm that only relies on pairwise similarities?

> One example for such an algorithm is Spectral Clustering

- Consider an undirected graph that connects all data points
- The edge weights are the similarities ("closeness")
- We define the weighted degree d_i of a node as the sum of all outgoing edges

W =

$$d_i = \sum_{j=1}^{N} w_{ij}$$

PD Dr. Rudolph Triebel

Computer Vision Group

$$D =$$

26

The Graph Laplacian is defined as:

$$L = D - W$$

- This matrix has the following properties:
 - the 1 vector is eigenvector with eigenvalue 0

The Graph Laplacian is defined as:

$$L = D - W$$

- This matrix has the following properties:
 - the 1 vector is eigenvector with eigenvector 0
 - the matrix is symmetric and positive semi-definite

The Graph Laplacian is defined as:

$$L = D - W$$

- This matrix has the following properties:
 - the 1 vector is eigenvector with eigenvector 0
 - the matrix is symmetric and positive semi-definite
- With these properties we can show:

Theorem: The set of eigenvectors of L with eigenvalue 0 is spanned by the indicator vectors $1_{A_1}, \ldots, 1_{A_K}$, where A_k are the K connected components of the graph.

The Algorithm

- Input: Similarity matrix W
- Compute L = D W
- Compute the eigenvectors that correspond to the K smallest eigenvalues
- Stack these vectors as columns in a matrix U
- Treat each row of U as a K-dim data point
- Cluster the N rows with K-means clustering
- The indices of the rows that correspond to the resulting clusters are those of the original data points.

An Example

- Spectral clustering can handle complex problems such as this one
- The complexity of the algorithm is O(N³), because it has to solve an eigenvector problem
- But there are efficient variants of the algorithm

Further Remarks

- To account for nodes that are highly connected, we can use a normalized version of the graph Laplacian
- Two different methods exist:
 - $L_{rw} = D^{-1}L = I D^{-1}W$
 - $L_{sym} = D^{-\frac{1}{2}}LD^{-\frac{1}{2}} = I D^{-\frac{1}{2}}WD^{-\frac{1}{2}}$
- These have similar eigenspaces than the original Laplacian L
- Clustering results tend to be better than with the unnormalized Laplacian
- The number of clusters K can be found using the "eigen-gap heuristic"

Eigen-Gap Heuristic

- Compute all eigen values of the graph Laplacian
- Sort them in increasing order
- Usually, there is a big "jump" between two consecutive eigen values
- The corresponding number K is a good choice for the estimated number of clusters

Summary

- Several Clustering methods exist:
 - K-means clustering and Expectation-Maximization, both based on Gaussian Mixture Models
 - K-means uses hard assignments, whereas EM uses soft assignments and estimates also the covariances
 - The Dirichlet Process is a non-parametric model to perform clustering without specifying K
 - Spectral clustering uses the graph Laplacian and performs an eigenvector analysis
- Major Problem:
 - most clustering algorithms require the number of clusters to be given

