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EM Algorithm for GMM

1.Initialize means p,.covariance matrices X.and
mixing coefficients

2.Compute the initial log-likelihood logp(X | m, 1, X)
3. E-Step. Compute the responsibilities:
N(xp | pg, 2

Zj:l miN (%7, | 7% )

4. M-Step. Update the parameters:

N N new new N
new __ anl ’}/(an)Xn ynew __ anl ’}/(an)(Xn B /’l’ke )(X’n B l’l’ke )T new __ 1
— ko = T = N Z V(2nk)

Z’)]’:]:]_ V(an) Z'f”),v:]_ W(an) n=1
5.Compute log-likelihood; if not converged go to 3.
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EM for GMM
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Why is it Called “EM”?

Assume for a moment that we observe X and the
binary latent variables Z. The likelihood is then:

N
“C lete-dat
p(X7 Z ‘ T, W, Z) — H p(zn ‘ ﬂ-)p(Xn | Zin, KL, E) Io;:?lzeeliﬁooif’a

n=1
K r 1
where  y(z, | n) = H o and Zn,
k=1 e
K
p(X’n ’ Zn, U, E) — HN(XR ‘ Mkyzk)znk Xn
k=1 H e Y
which leads to the log-formulation: L 2D
N K
logp(X, Z | m, 1, %) = Znk (log Ty +1log N (%, | pg,, X))

Machine Learning for PD Dr. Rudolph Triebel

Computer Vision Computer Vision Group



Why is it Called “EM”?

Instead of maximizing the joint log-likelihood, we
maximize its expectation under the latent variable
distribution:

iz [logp(X, Z |, X)) = ), »  Ezlent](logmi +log N (X | gy, Si))
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Why is it Called “EM”?

Instead of maximizing the joint log-likelihood, we
maximize its expectation under the latent variable

distribution:
K

tJZ

tZ[an](log T + IOgN(Xn ‘ 12278 Zk))

*EZ[Ing(X,Z ‘ 777“’72)] —

|
}—l
|
— U

k

n

where the latent variable distribution per point is:

P |20, Oz |0)
p(Zn | XTL?H) o p(Xn ‘ 9) 0 = ( » s Z)

— Hllil(WlN(Xn ‘ I_,l,bzl))znl
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Observations

e Compared to K-means, points can now belong to
both clusters (soft assignment)

¢ |n addition to the cluster center, a covariance Is
estimated by EM

* |nitialization is the same as used for K-means
* Number of iterations needed for EM is much higher
* Also: each cycle requires much more computation

e Therefore: start with K-means and run EM on the
result of K-means (covariances can be initialized to
the sample covariances of K-means)

* EM only finds a local maximum of the likelihood!
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Rep.: From MLE to MAP (Regression)

In MLE, we searched for parameters w, that maximize
the data likelihood. Now, we assume a Gaussian

p(w | o2) =N(w;0,051)
Using this, we can compute the (Bayes):

Posterior Likelihood Prior
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Generalization: The Bayesian Approach

This idea can be generalized:
e Given a data-dependent likelihood term
* Find an appropriate prior distribution

e Multiply both and obtain the (unnormalized)
posterior from Bayes rule

e Main benefit: less overfitting
However:

* How should we define the prior?
Often used principle: Conjugacy
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Conjugate Priors

A conjugate prior distribution allows to represent
the posterior in the same functional (closed)
form as the prior, e.g.:

@ 0, O@@W, o
/ /

Gaussian prior Gaussian likelihood Gaussian posterior
COmmOﬂ paIrS Of Normal with known variance Normal
likelihood and Binomial Beta
Conjugate prlOrS are: Multinomial Dirichlet

Multivariate Normal Normal-inverse Wishart
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Multinomial

® Given K clusters and probabilities of these
K
clusters m.....mx where ) = =1
k=1

®* The probabillity that out of N samples m are Iin
cluster £ Is:

N K
plma,...,mx |, V) = (ml...mK> HNZ%
k=1

e This Is called the multinomial distribution
® |n our case:

o2 |7 = T TLei = T
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The Dirichlet Distribution

e The Dirichlet distribution Is defined as:

Dir(p | a) = F(al)r.(.ofOIz(&K) kl;[llugk—l g = I;Ozk

K
0<pp <1 ) m=1
k=1

* |t is the conjugate prior for
the multinomial distribution

0%,

* There, the parameter o can
be interpreted as the effective o
number of observations for
every State The simplex for K=3
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Some Examples

a=(2,2,2) a = (20,2,2)

* a9 controls the strength
of the distribution
(“peakedness”)

e ;. control the location
of the peak

a = (0.1,0.1,0.1)
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Clustering using Mixture Models

e The full posterior of the Gaussian Mixture Model is
p(X, Z,p, % mw) =p(X | Z, 1, V)p(Z | w)p(m | a)p(p, X [ A)

data likelihood || correspondence mixture prior | parameter prior
(Gaussian) prob. (Multinomial) (Dirichlet) (Gauss-I1W)

@_. ) Given this model, we can

create new samples:

(2 r@ 1.Sample =, 6, from priors

2.Sample corresp. z;
X,

3.Sample data point x;
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Clustering using Mixture Models

e The full posterior of the Gaussian Mixture Model is
p(X, Z,p, % mw) =p(X | Z, 1, V)p(Z | w)p(m | a)p(p, X [ A)

data likelihood || correspondence mixture prior | parameter prior
(Gaussian) prob. (Multinomial) (Dirichlet) (Gauss-I1W)

() —(m) (X w0~ Dir( ey )
@ r@ z; ~ Mult(7r)

@ X4 NN(HZz)
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Clustering using Mixture Models

e The full posterior of the Gaussian Mixture Model is
p(X, Z,p, % mw) =p(X | Z, 1, V)p(Z | w)p(m | a)p(p, X [ A)

data likelihood || correspondence mixture prior | parameter prior
(Gaussian) prob. (Multinomial) (Dirichlet) (Gauss-I1W)

An equivalent formulation of
this model Is this: @ | G Q

1.Sample =, 8, from priors
o

2.Sample params 9, from a
discrete dist. G

3.Sample data point x; x;
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Clustering using Mixture Models

What is the difference in that model?
e there is one parameter 0,for each observation x;

e intuitively: we first sample the location of the
cluster and then the data that corresponds to it

In general, we use the notation:
(@—@ &

T~ Dlr(El)
0, ~ H(\) “Base distribution”

0; ~ G(m, Hk) where

7T Hk Zﬂ'k5 Hk,
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0.5

Remember: Generating GMM Data

0.5
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The Dirichlet Process

e So far, we assumed that K is known
* To extend that to infinity, we use a trick:

Definition: A Dirichlet process (DP) is a distribution
over probability measures G, i.e. G(6) > 0 and

/G(e)de — 1. If for any partition (71, ...,Tk) it holds:

(G(TY),...,G(Tk)) ~ Dir(aH(TY),...,aH(Tk))
then G is sampled from a Dirichlet process.
Notation: G ~ DP(a, H)

where o Is the concentration parameter
and H Is the base measure

PD Dr. Rudolph Triebel
Computer Vision Group




Intuitive Interpretation

e Every sample from a Dirichlet distribution is a

vector of K positive values that sum up to 1, I.e.
the sample itself is a finite distribution

e Accordingly, a sample from a Dirichlet process is
an infinite (but still discrete!) distribution

Jo / Base distribution
L (here Gaussian)
0.25 / \\ J

) | /Infinitely many
samples (sum up to 1)
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Construction of a Dirichlet Process

* The Dirichlet process is only defined implicitly, i.e.
we can test whether a given probability measure is
sampled from a DP, but we can not yet construct
one.

* A DP can be constructed using the “stick-
breaking” analogy:

* imagine a stick of length 1

*we select a random number S between 0 and 1 from a
Beta-distribution

*we break the stick at m = B * length-of-stick
e we repeat this infinitely often
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The Stick-Breaking Construction

0.5 0.4

| BJ | I_BI ] 0.4 0.3
0.3
TC] B2 1_B2 0 0.2
TCZ 0.1 0.1 ‘II I
1_
|§c—3|_BS| % 10 20 30 % 10 20 30
3 B4 1_B4 a=5 a=>5
I_I_ITC 0.4 0.2
4| B5 — 0.3 0.15
7-[5 : 0.2 0.1
o 0.1 0.05
0 0

0 10 20 30 0 10 20 30

e formally, we have o o
Br ~ Beta(l,a)  m =8k | [ —8) =81 =) m)
[=1 [=1

e now we define

G(6) =) m0(0r,0) 6, ~H then: G~ DP(a, H)
k=1
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The Chinese Restaurant Process
e Consider a restaurant with infinitely many tables

e Everytime a new customer comes in, he sits at an
occupied table with probability proportional to
the number of people sitting at that table, but he
may choose to sit on a new table with decreasing
probability as more customers enter the room.
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The DP for Mixture Modeling

e Using the stick-breaking construction, we see that
we can extend the mixture model clustering to the

situation where K goes to infinity

* The algorithm can be implemented using Gibbs
sampling

iiiiiii
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Questions

e What if the clusters can not be approximated well
by Gaussians?

e Can we formulate an algorithm that only relies on
pairwise similarities”?

One example for such an algorithm is
Spectral Clustering
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Spectral Clustering

e Consider an undirected graph that connects all
data points

* The edge weights are the similarities (“closeness”)

* We define the weighted degree d; of a hode as the
sum of all outgoing edges

N
v di =) wy
j=1
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Spectral Clustering

e The Graph Laplacian is defined as:

L=D-W
* This matrix has the following properties:
*the 1 vector is eigenvector with eigenvalue O
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Spectral Clustering

e The Graph Laplacian is defined as:
L=D-W
* This matrix has the following properties:

*the 1 vector is eigenvector with eigenvector O
e the matrix is symmetric and positive semi-definite
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Spectral Clustering

e The Graph Laplacian is defined as:
L=D-W
* This matrix has the following properties:

*the 1 vector is eigenvector with eigenvector O
e the matrix is symmetric and positive semi-definite

o \With these properties we can show:
Theorem: The set of eigenvectors of L with
eigenvalue 0 is spanned by the indicator vectors

1a,,...,14,, where A; are the K connected
components of the graph.
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The Algorithm

* |nput: Similarity matrix W
e ComputeL=D-W

e Compute the eigenvectors that correspond to the
K smallest eigenvalues

e Stack these vectors as columns in a matrix U
e Treat each row of U as a K-dim data point
e Cluster the N rows with K-means clustering

* The indices of the rows that correspond to the
resulting clusters are those of the original data
points.
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An Example

k-means clustering spectral cI ster'ng
T YR N
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e Spectral clustering can handle complex problems
such as this one

e The complexity of the algorithm is O(N’), because
it has to solve an eigenvector problem

e But there are efficient variants of the algorithm
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Further Remarks

e To account for nodes that are highly connected,
we can use a normalized version of the graph
Laplacian

e Two different methods exist:
® Ly =D 'L=I-D"'W
¢ Lyym =D 3LD 2 =]—-D 3WD"2

* These have similar eigenspaces than the original
Laplacian L

e Clustering results tend to be better than with the
unnormalized Laplacian

* The number of clusters K can be found using the
“elgen-gap heuristic”
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Eigen-Gap Heuristic

Histogram of the sample

Z e Compute all eigen values of the
,Ml i |[,N graph Laplacian

0 2 - 6 8 10

. e Sort them in increasing order
fom e e Usually, there is a big “jump”
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Summary

e Several Clustering methods exist:

e K-means clustering and Expectation-Maximization,
both based on Gaussian Mixture Models

e K-means uses hard assignments, whereas EM uses
soft assignments and estimates also the covariances

* The Dirichlet Process is a non-parametric model to
perform clustering without specifying K

e Spectral clustering uses the graph Laplacian and
performs an eigenvector analysis

* Major Problem:;

* most clustering algorithms require the number of
clusters to be given
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