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Exercise 1: Basic model

Consider a linear regression model with basis functions φ(x) as presented in the lecture.
Suppose we have observed N data points {xi, ti}i=1...N .

a) What do we need to estimate if we want to fit this model?

The weights of the basis functions, therefore a vector w ∈ Rm, assuming φ(x) ∈ Rm.

b) What would be the optimal solution in the sense of sum-of-squares error?

Minimizing the sum-of-squares error amounts to:

wSSE = arg min
w

1

N

N∑
i=1

(ti − wTφ(xi))
2

︸ ︷︷ ︸
L(w)

(1)

We take the gradient of the loss function w.r.t. w, set it to 0 and solve for w:

∇wL(w) = ∇w

(
1

N

N∑
i=1

(ti − wTφ(xi))
2

)

= ∇w

(
1

2

N∑
i=1

(ti − wTφ(xi))
2

)

= ∇w

(
1

2

N∑
i=1

−2tiw
Tφ(xi) + ||wTφ(xi)||2

)

=
N∑
i=1

−tiφ(xi) + (wTφ(xi))φ(xi)
!

= 0
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Solving for w:

N∑
i=1

(wTφ(xi))φ(xi) =
N∑
i=1

tiφ(xi)

N∑
i=1

φ(xi)(φ(xi)
Tw) =

N∑
i=1

tiφ(xi)

(
N∑
i=1

φ(xi)(φ(xi)
T )w =

N∑
i=1

tiφ(xi)

ΦTΦw = ΦT t

wSSE = (ΦTΦ)−1ΦT t

c) Can you define and solve the problem in a probabilistic way?
Hint: You have to make some assumptions.

To define the problem in a probabilistic way, we have to assume a distribution over
our observed target variables. The simplest way is to choose this distribution to be
Gaussian, centered at our model’s predictions with some deviation σ. So we model our
observations as the likelihood:

p(ti|xi, w) = N(ti|wTφ(xi), σ
2)

We also assume that the data points we observed are independent and identically
distributed (i.i.d.). Therefore the likelihood over all points is just the product of the
likelihoods of each observation:

p(t|X,w) =
N∏
i=1

p(ti|xi, w) =
N∏
i=1

N(ti|wTφ(xi), σ
2)

We want to find the weights that maximize this likelihood:

wML = arg max
w

p(t|X,w) = arg max
w

N∏
i=1

N(ti|wTφ(xi), σ
2)

Now we make use of two facts:

a) Maximizing a function f(x) is the same as maximizing log f(x) because the loga-
rithm is a monotonically increasing function.

b) Maximizing a function f(x) is the same as minimizing −f(x).
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Using these two, we end up minimizing the negative log-likelihood (NLL):

wML = wNLL = arg min
w

− ln

(
N∏
i=1

N(ti|wTφ(xi), σ
2)

)

= arg min
w

−
N∑
i=1

lnN(ti|wTφ(xi), σ
2)

= arg min
w

−
N∑
i=1

ln

(
(2πσ2)−1/2 exp

(
−(ti − wTφ(xi))

2

2σ2

))

= arg min
w

−
N∑
i=1

ln(2πσ2)−1/2 + ln

(
exp

(
−(ti − wTφ(xi))

2

2σ2

))

= arg min
w

−N ln(2πσ2)−1/2 −
N∑
i=1

(
−(ti − wTφ(xi))

2

2σ2

)

= arg min
w

1

2σ2

N∑
i=1

(ti − wTφ(xi))
2 = arg min

w

1

2

N∑
i=1

(ti − wTφ(xi))
2 = wSSE

Therefore, we ended up with the same solution: wML = wNLL = wSSE = (ΦTΦ)−1ΦT t.

Exercise 2: Bayesian Update

Now we assume a Gaussian prior distribution for the weights:

p(w) = N(w|m0, S0)

Suppose we have already observed N data points, so the posterior distribution is

p(w|t) = N(w|mN , SN)

with

mN = SN(S−1
0 m0 + σ−2ΦT t) and S−1

N = S−1
0 + σ−2ΦTΦ.

Now, we observe a new data point (xN+1, tN+1). What is the new posterior?

Using Bayes rule, we found out that having a Gaussian prior and a Gaussian likelihood
gave us a Gaussian posterior which we can use as the prior for the next iteration (next
sample that we observe). Now we want to compute p(w|t, tN+1, xN+1) which reduces to
p(w|tN+1, xN+1,mN , SN).

Our likelihood is

p(tN+1|xN+1,w) = N(tN+1|y(w, φ(xN+1)), σ
2)
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Let φN = φ(xN) to simplify notation. Writing the likelihood explicitly we get

p(tN+1|xN+1,w) =
1√

2πσ2
exp

(
−(tN+1 −wTφN+1)

2

2σ2

)
Our posterior is

p(w|tN+1, xN+1,mN , SN) =
p(tN+1|xN+1,w)p(w|t)

p(tN+1|xN+1, t)

We want the maximum likelihood of the posterior, namely the maximum a posteriori
(MAP). The denominator is independent of w so for now we can ignore it.

p(w|tN+1, xN+1,mN , SN) ∝ p(w|t)p(tN+1|xN+1,w)

∝ exp

(
−1

2
(w −mN)TS−1

N (w −mN)− (tN+1 −wTφN+1)
2

2σ2

)
Therefore we have

wMAP = arg max
w

p(w|t)p(tN+1|xN+1,w) = arg min
w

− ln (p(w|t)p(tN+1|xN+1,w))

= arg min
w

(w −mN)TS−1
N (w −mN) +

(tN+1 −wTφN+1)
2

σ2

= arg min
w

wTS−1
N w − 2wTS−1

N mN − 2
wTφN+1tN+1

σ2
+

wTφN+1φ
T
N+1w

σ2

= arg min
w

wT (S−1
N +

φN+1φ
T
N+1

σ2
)w − 2wT

(
S−1
N mN +

φN+1tN+1

σ2

)
where we have ignored all terms that are independent of w.
Now we can save us some time and computation by observing how the maximum likelihood
of our prior relates to the maximum likelihood of our posterior. For our prior we had:

wML = arg max
w

p(w|t) = arg min
w

− ln p(w|t) = arg min
w

− lnN(w|mN , SN)

= arg min
w

− ln(2π|SN |)−
d
2 +

1

2
(w −mN)TS−1

N (w −mN)

= arg min
w

(w −mN)TS−1
N (w −mN) = arg min

w
wTS−1

N w − 2wTS−1
N mN

We observe that for our prior, the inverse covariance matrix for N points S−1
N stands

alone in the second-order term of the weights. This means, what stands alone in the
second-order term of the weights of the posterior, should be the inverse covariance matrix
for N + 1 points, S−1

N+1:

S−1
N+1 = S−1

N +
1

σ2
φN+1φ

T
N+1

This means we can update the (inverse) covariance matrix with a rank-one update
based on the one new point we observed. Equivalently, for the first-order term we have:

S−1
N+1mN+1 = S−1

N mN +
1

σ2
φN+1tN+1 ⇒ mN+1 = SN+1(S

−1
N mN +

φN+1tN+1

σ2
)
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