
TU München
Fakultät für Informatik
PD Dr. Rudolph Triebel
John Chiotellis, Maximilian Denninger

Machine Learning for Computer Vision
Winter term 2018

December 6, 2018
Topic: Kernels and Gaussian Processes

Exercise 1: Constructing kernels

During this solution we assume the feature spaces of k1 and k2 to have finite dimensions.
Thus they can be written as k1(x1, x2) = φ1(x1)

Tφ1(x2), k2(x1, x2) = φ2(x1)
Tφ2(x2),

where φ1(x) ∈ Rn1 , φ2(x) ∈ Rn2 . Note however that in general feature spaces can be
infinite dimensional (e.g. φ(x) ∈ l2(R), see 4.). We now have to define new kernels via a
scalarproduct k(x1, x2) = 〈φ(x1), φ(x2)〉

a) k(x1, x2) = k1(x1, x2) + k2(x1, x2)

To warm up:

φ(x) =

(
φ1(x)
φ2(x)

)
∈ Rn1+n2

b) k(x1, x2) = k1(x1, x2)k2(x1, x2)

Note that the matrix-products do not commute, so it is a bit of work:

k(x1, x2) = φ1(x1)
Tφ1(x2)φ2(x1)

Tφ2(x2)

= (
∑
i

(φ1(x1))i(φ1(x2))i)(
∑
j

(φ2(x1))j(φ2(x2))j)

=
∑
i

∑
j

(φ1(x1))i(φ1(x2))i(φ2(x1))j(φ2(x2))j

=
∑
i

∑
j︸ ︷︷ ︸∑

k

(φ1(x1))i(φ2(x1))j︸ ︷︷ ︸
φk(x1)

(φ1(x2))i(φ2(x2))j︸ ︷︷ ︸
φk(x2)

⇒ φ(x) =



(φ1(x))1(φ2(x))1
...

(φ1(x))1(φ2(x))n2

(φ1(x))2(φ2(x))1
...

(φ1(x))n1(φ2(x))n2


∈ Rn1·n2

c) k(x1, x2) = f(x1)k1(x1, x2)f(x2)

φ(x) = f(x)φ1(x)

1

d) k(x, y) = exp(k1(x, y))

Again we write the scalarproduct as a sum:

exp((φ1(x))Tφ(y)) = exp(
∑

(φ1(x))i(φ1(y))i)

=
∏

exp((φ1(x))i(φ1(y))i)

Since we already know that the product of kernels is again a kernel it remains to show,
that exp((φ(x))i(φ(y))i) is a kernel for a fixed index i. In the following we will omit
i and imagine φ1 to be a scalar-valued function. From the Taylor-expansion of the
exponential function, we know that

exp(φ1(x))(φ1(y)) =
∞∑
k=0

1

k!
(φ1(x))k(φ1(y))k

This is an inner product in l2(R) with

φ(x) =



φ1(x)
1√
2
φ1(x)2

1√
6
φ1(x)3

...
1√
k!
φ1(x)k

...


e) k(x1, x2) = xT1Ax2

Since A is symmetric positive-definite, it admits a Cholesky decomposition A = LLT .
Therefore, we have xT1Ax2 = xT1LL

Tx2 = (LTx1)
T (LTx2). So φ(x) = LTx.

Exercise 2: Gaussian Regression

a) Implement a simple gaussian regressor. As trainings data you can use the provided
code snippet to generate ten points along a sinus curve. Use a fixed length param of
3.0, with a sigmaf of 1.0 and sigman of 0.5.

import numpy as np
s igma no i s e = 0 .5
x min , x max = −5, 5
X tra in = np . l i n s p a c e (x min , x max , num=10)
Simulate s i nu s o i d with some gauss ian no i s e
Y tra in = [10∗np . s i n (x) + (np . random . rand () − 0 . 5) ∗ s i gma no i s e f o r x in

X tra in]

We suggestion you use a kernel function like this:

Kernel f unc t i on
de f r b f k e r n e l (x , y , l =1.0 , s i gma f =1.0 , sigma n=0.5) :

r e turn s igma f ∗∗2 ∗ np . exp(−(x − y) ∗∗2 / (2∗ l ∗∗2)) + sigma n ∗∗2∗(x==y
)

2

See code.

b) Now test different length parameter and plot the results and compare them to each
other, what do you observe.

An higher length parameter incorporates a wider range of data and makes the function
smoother, if the range contains new data points. If the value is too small, it only spikes
at the data points and else uses the system noise.

c) Do the same for the sigmaf parameter, use a length of 0.5. How does it influence the
result?

The sigmaf mainly influences the parts where no points are around, an higher value
increase the uncertainty in this areas.

3

4

