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Exercise 1: K-Means Compression (Programming)

a) K-Means finds the parameters (cluster means) that minimize the assignment cost:

θ∗ = arg min
θ

N∑
i=1

K∑
j=1

Aij||xi − µj||2 , (1)

where θ = {µk : 1 ≤ k ≤ K} and Aij is 1 if xi is assigned to cluster j and 0
otherwise.

b) See code.

Exercise 2: Expectation-Maximization for GMM (Programming)

a) EM finds the parameters (means, covariances and mixture coefficients) that maxi-
mize the conditional data log-likelihood:

θ∗ = arg max
θ

log p(X|µ,Σ,π) (2)

where θ = {µk,Σk,πk : 1 ≤ k ≤ K}

b) See code.

Exercise 3: Expectation-Maximization for GMM

In the standard EM algorithm, we first define the responsibilities γ as

γnk = p(znk = 1|xn) =
πkN(xn|µk,Σk)∑K
j=1 πjN(xn|µj,Σj)

, znk ∈ {0, 1},
K∑
k=1

znk = 1

a) Find the optimal means, covariances and mixing coefficients that maximize the data
likelihood. How can we interpret the results?

We want to maximize the data likelihood, so as usual we minimize the negative
log-likelihood:

−LL = − log p(X|µ,Σ,π) = − log
∏
n

∑
k

πkN(xn|µk,Σk) (3)
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This time we minimize 3 times independently with respect to the means, the co-
variances and the mixture coefficients:

µ∗k = arg min
µk

−LL (4)

Σ∗k = arg min
Σk

−LL (5)

π∗k = arg min
πk

−LL (6)

In the following, to avoid confusion of sums and covariances, we denote covariance
Σk as Ck. To simplify some expressions, let us agree on the following notation:

Nnk ≡ N(xn|µk, Ck) (7)

Zk ≡ ((2π)d|Ck|)1/2 (8)

Dnk ≡ (xn − µk)TC−1
k (xn − µk) (9)

Therefore Nnk = Z−1
k exp{−1

2
Dnk} (10)

Thus, we have:

−LL = −
∑
n

log
∑
k

πkNnk

= −
∑
n

log
∑
k

πkZ
−1
k exp(−1

2
Dnk)

Solving for the means:

∂LL

∂µk
=
∑
n

1∑
j πjNnj

∂
∑

k πkZ
−1
k exp(−1

2
Dnk)

∂µk
(11)

=
∑
n

1∑
j πjNnj

πkZ
−1
k

∂ exp(−1
2
Dnk)

∂µk
(12)

=
∑
n

1∑
j πjNnj

πkZ
−1
k exp(−1

2
Dnk)C

−1
k (xn − µk) (13)

=
∑
n

πkNnk∑
j πjNnj

C−1
k (xn − µk) (14)

=
∑
n

γnkC
−1
k (xn − µk) (15)

(16)
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Setting −∂LL
∂µk

!
= 0 gives us:∑

n

γnkC
−1
k µk =

∑
n

γnkC
−1
k xn (17)

C−1
k µk

∑
n

γnk = C−1
k

∑
n

γnkxn (18)

C−1
k µk

∑
n

γnk = C−1
k

∑
n

γnkxn (19)

µk
∑
n

γnk =
∑
n

γnkxn (20)

µk =

∑
n γnkxn∑
n γnk

(21)

Solving for the covariances:

∂LL

∂Ck
=
∑
n

1∑
j πjNnj

∂
∑

k πkZ
−1
k exp(−1

2
Dnk)

∂Ck
(22)

=
∑
n

1∑
j πjNnj

πk
∂Z−1

k exp(−1
2
Dnk)

∂Ck
(23)

=
∑
n

1∑
j πjNnj

πk

(
∂Z−1

k

∂Ck
exp(−1

2
Dnk) + Z−1

k

∂ exp(−1
2
Dnk)

∂Ck

)
(24)

=
∑
n

1∑
j πjNnj

πk

(
(−1

2
Z−1
k C−1

k ) exp(−1

2
Dnk) +

1

2
Z−1
k exp(−1

2
Dnk)C

−1
k (xn − µk)(xn − µk)TC−1

k

)
(25)

= (−1

2
)
∑
n

1∑
j πjNnj

πkZ
−1
k exp(−1

2
Dnk)

(
C−1
k − C

−1
k (xn − µk)(xn − µk)TC−1

k

)
(26)

= (−1

2
)
∑
n

γnk
(
C−1
k − C

−1
k (xn − µk)(xn − µk)TC−1

k

)
(27)

(28)

Here, we used the derivative of the determinant as follows:

∂Z−1
k

∂Ck
=
∂((2π)d|Ck|)−

1
2

∂Ck
= ((2π)d)−

1
2
∂(|Ck|)−

1
2

∂Ck
(29)

= ((2π)d)−
1
2 (−1

2
)|Ck|−

3
2
∂(|Ck|)
∂Ck

= ((2π)d)−
1
2 (−1

2
)|Ck|−

3
2 |Ck|(C−1

k )T (30)

= (−1

2
)((2π)d)−

1
2 |Ck|−

1
2C−1

k = −1

2
Z−1
k C−1

k (31)

and the derivative of the Mahalanobis distance as:

∂xTC−1x

∂C
= −C−TxxTC−T = −C−1xxTC−1 (32)
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Setting −∂LL
∂Ck

!
= 0 gives us:∑

n

γnkC
−1
k =

∑
n

γnkC
−1
k (xn − µk)(xn − µk)TC−1

k (33)

C−1
k

∑
n

γnk = C−1
k

∑
n

γnk(xn − µk)(xn − µk)TC−1
k (34)∑

n

γnk =
∑
n

γnk(xn − µk)(xn − µk)TC−1
k (35)

Ck =

∑
n γnk(xn − µk)(xn − µk)T∑

n γnk
(36)

Solving for the mixture coefficients: Here we must take into account that
∑

k πk = 1.
We enforce this constraint with a Lagrange multiplier. Our objective then becomes:

LL′ = LL + λ(
∑
k

πk − 1) (37)

where λ < 0.

Deriving w.r.t. πk, we get

∂LL′

∂πk
=
∑
n

1∑
j πjNnj

∂
∑

k πkNnk

∂πk
+ λ (38)

=
∑
n

1∑
j πjNnj

Nnk + λ (39)

=
∑
n

γnk
πk

+ λ (40)

Setting equal to zero and solving for λ, we get

λ = −
∑
n

γnk
πk

(41)

λπk = −
∑
n

γnk (42)∑
k

λπk = −
∑
k

∑
n

γnk (43)

λ = −N (44)

Now we can plug this back to the objective and actually solve for πk:

∂LL′

∂πk
=
∑
n

γnk
πk
−N !

= 0 (45)

1

πk

∑
n

γnk = N (46)

πk =

∑
n γnk
N

=
Nk

N
(47)
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We can interpret these results as weighted averages of means and covariances, the
weights corresponding to the responsibilities γnk. The mixture coefficients πk are
simply the ratio of data points explained by each component.
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b) Define the complete-data-log-likelihood. What is the difference to the standard
log-likelihood?

Assuming we observe not only the data but also the binary latent variables Z we
define the complete data likelihood as:

p(X,Z|π,µ,C) =
∏
n

p(zn|π)p(xn|zn,µ,C) (48)

where p(zn|π) =
∏

k π
znk
k and p(xn|zn,µ,C) =

∏
kN(xn|µk, Ck)znk .

Remember that
∑

k znk = 1.

Since now we only have products, we can more easily compute the logarithm:

log p(X,Z|π,µ,C) =
∑
n

∑
k

znk(log πk + logN(xn|µk, Ck)) (49)

Of course in practice, the latent variables are not known, so we maximize the ex-
pectation:

E[log p(X,Z|π,µ,C)] =
∑
n

∑
k

E[znk](log πk + logN(xn|µk, Ck)) (50)

where we know that E[znk] = γnk.

The theory says that the log-marginal is also maximized implicitly!
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