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Exercise 1: K-Means Compression (Programming)

a) K-Means finds the parameters (cluster means) that minimize the assignment cost:

N K
0" = argmin » > Ayll@; — (1)
6 4=
where 8 = {p : 1 < k < K} and A;; is 1 if z; is assigned to cluster j and 0
otherwise.
b) See code.

Exercise 2: Expectation-Maximization for GMM (Programming)

a) EM finds the parameters (means, covariances and mixture coefficients) that maxi-
mize the conditional data log-likelihood:

0" = arg maxlog p(X|u, %, ) (2)
0

where 6 = {pg, Xy, 70 1 < k < K}
b) See code.

Exercise 3: Expectation-Maximization for GMM

In the standard EM algorithm, we first define the responsibilities v as

_ _ Nz, Xi)
Tnk = p(znk - 1|xn> — K
> i TN (@l 1y, Ej)

a) Find the optimal means, covariances and mixing coefficients that maximize the data
likelihood. How can we interpret the results?

K
) Znk € {071}7zznk =1
k=1

We want to maximize the data likelihood, so as usual we minimize the negative
log-likelihood:

L0 = —logp(XWaE’ﬂ') = —logHZﬂ'kN(fL’n’Mkz,Ek) <3)
n k

1



This time we minimize 3 times independently with respect to the means, the co-
variances and the mixture coefficients:

py, = arg min — L0 (4)
1ok

Y, = argmin —LL (5)
Xk

7, = argmin —LL (6)

Tk

In the following, to avoid confusion of sums and covariances, we denote covariance
Y as C. To simplify some expressions, let us agree on the following notation:

Nuk = N(@n |, C) (7)

Zy = ((2m)!|Cy[) 1?2 (8)

Do = (0 — )" Cp (w0 — i) (9)
Therefore N, = 7, exp{—%an} (10)

Thus, we have:

—LL = — ZlomeNnk
n k
== log) mZ"' exp(—%an)
n k

Solving for the means:
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= Z%kck_ (Tn — i) (15)



Setting —%LTf =0 gives us:
Z%kq;lﬂk = Z%kckflxn
Cili > Yok = C" ) Yok
oty Z%k =C;! Z%k%

e = A
Zn Ynk

Solving for the covariances:
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Here, we used the derivative of the determinant as follows:
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and the derivative of the Mahalanobis distance as:
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0LL

! )
36, = 0 gives us:
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Solving for the mixture coefficients: Here we must take into account that ), m, = 1.
We enforce this constraint with a Lagrange multiplier. Our objective then becomes:

LL =LL+A) m—1)
k

where \ < 0.

Deriving w.r.t. m, we get
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Setting equal to zero and solving for A, we get
Tnk
A=— —
AT = — Z Tnk
A==
k k n

A=—-N

Now we can plug this back to the objective and actually solve for m:
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We can interpret these results as weighted averages of means and covariances, the
weights corresponding to the responsibilities 7,,. The mixture coefficients m; are
simply the ratio of data points explained by each component.



b) Define the complete-data-log-likelihood. What is the difference to the standard
log-likelihood?

Assuming we observe not only the data but also the binary latent variables Z we
define the complete data likelihood as:

p(X, Zlm, 1, C) = [ plealm)p(alzns 1, C) (48)

where  p(z,|m) =[], 7% and  p(z,|2,, pw, C) = [1, N(@n |, Cr)* .
Remember that ), 2, = 1.

Since now we only have products, we can more easily compute the logarithm:

lng(X, Z|ﬂ-’ M, C) = Z Z an(log T + log N(onk, Ok)) (49)
n k

Of course in practice, the latent variables are not known, so we maximize the ex-
pectation:

Ellog p(X, Z|m, 41, C)] = Y > Elzut](log me + log N(walpr, Ci))  (50)

n k

where we know that E[z.x] = Y-

The theory says that the log-marginal is also maximized implicitly!



