

7. Gaussian Processes (contd.)

Prediction with a Gaussian Process

In the case of only one test point x^* we have

$$K(X, \mathbf{x}^*) = \begin{pmatrix} k(\mathbf{x}_1, \mathbf{x}_*) \\ \vdots \\ k(\mathbf{x}_N, \mathbf{x}_*) \end{pmatrix} = \mathbf{k}_*$$

Now we compute the conditional distribution

$$p(y^* \mid \mathbf{x}^*, X, \mathbf{y}) = \mathcal{N}(y_* \mid \mu_*, \Sigma_*)$$

where

$$\mu_* = \mathbf{k}_*^T K^{-1} \mathbf{t}$$

$$\Sigma_* = k(\mathbf{x}_*, \mathbf{x}_*) - \mathbf{k}_*^T K^{-1} \mathbf{k}_*$$

This defines the predictive distribution.

Implementation

Algorithm 1: GP regression

Data: training data (X, \mathbf{y}) , test data \mathbf{x}_*

Input: Hyper parameters σ_f^2 , l, σ_n^2

$$K_{ij} \leftarrow k(\mathbf{x}_i, \mathbf{x}_j)$$
 $L \leftarrow \text{cholesky}(K + \sigma_n^2 I)$
 $\boldsymbol{\alpha} \leftarrow L^T \backslash (L \backslash \mathbf{y})$

Precomputed during Training

$$\mathbb{E}[f_*] \leftarrow \mathbf{k}_*^T \boldsymbol{\alpha}$$
 $\mathbf{v} \leftarrow L \setminus \mathbf{k}_*$

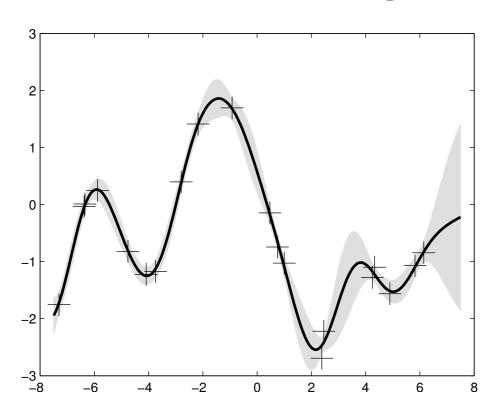
Test Phase

$$\mathtt{var}[f_*] \leftarrow k(\mathbf{x}_*, \mathbf{x}_*) - \mathbf{v}^T \mathbf{v}$$

$$\log p(\mathbf{y} \mid X) \leftarrow -\frac{1}{2}\mathbf{y}^T \boldsymbol{\alpha} - \sum_{i} \log L_{ii} - \frac{N}{2} \log(2\pi)$$

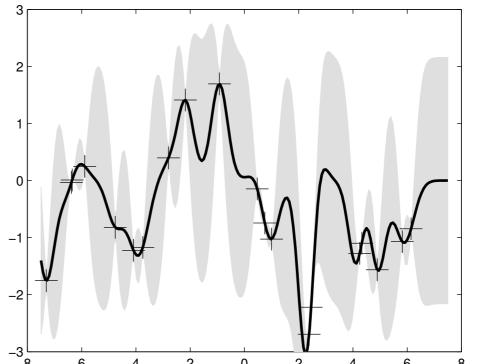
- Cholesky decomposition is numerically stable
- Can be used to compute inverse efficiently

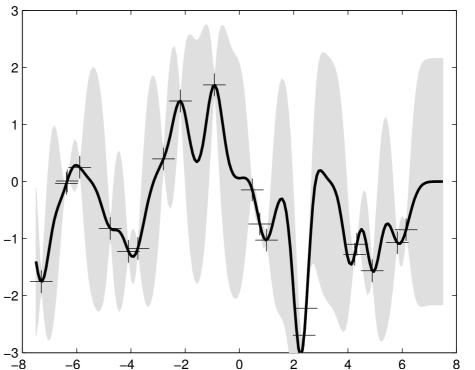
Varying the Hyperparameters

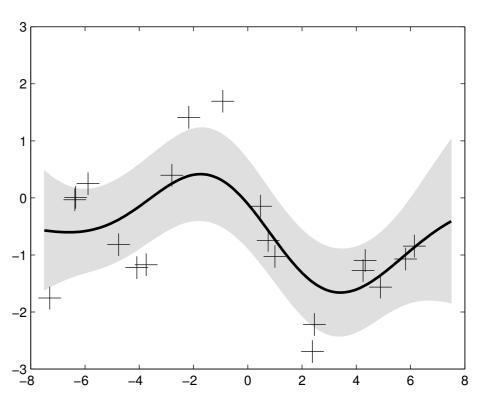


$$l = \sigma_f = 1, \quad \sigma_n = 0.1$$

- 20 data samples
- GP prediction with different kernel hyper parameters







$$l = 0.3,$$

$$\sigma_f = 1.08,$$

$$\sigma_n = 0.0005$$

$$l=3$$

$$\sigma_f = 1.16$$

$$\sigma_n = 0.89$$

Varying the Hyperparameters

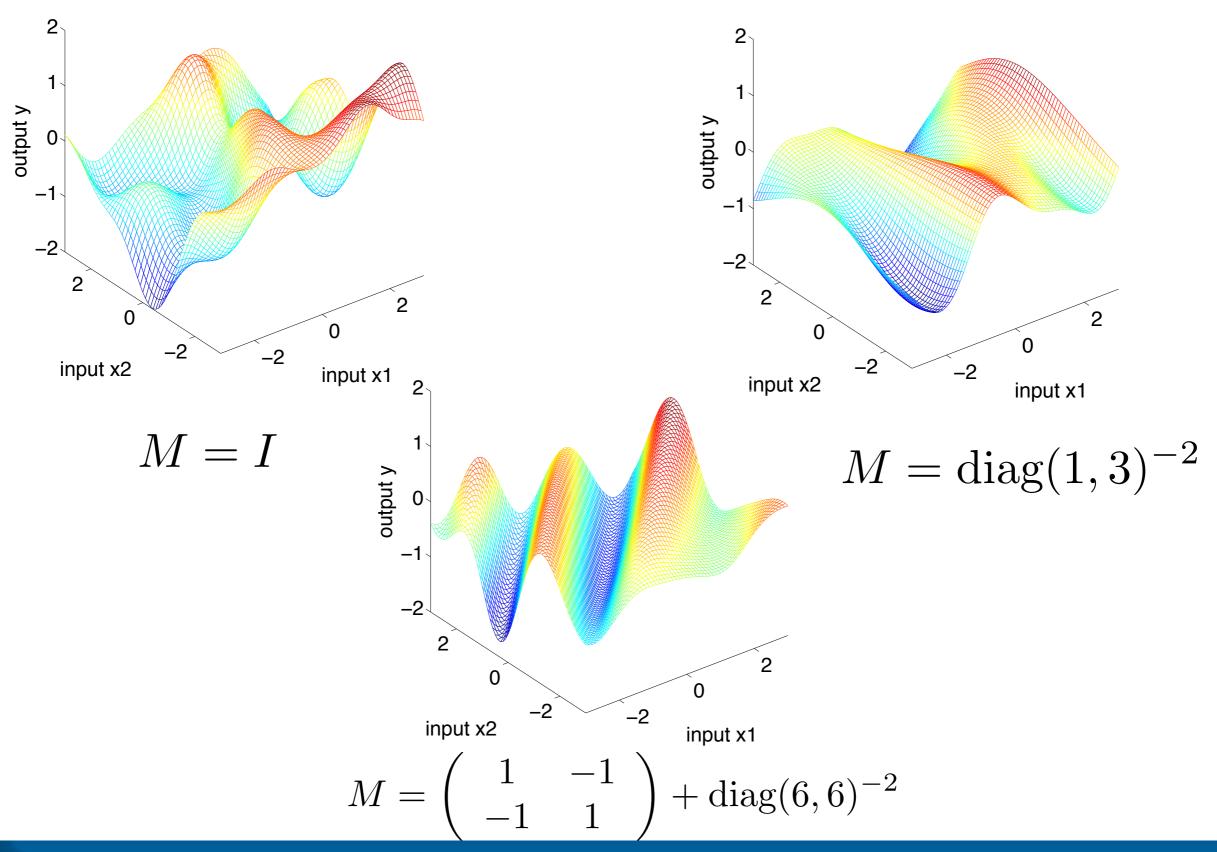
The squared exponential covariance function can be generalized to

$$k(\mathbf{x}_p, \mathbf{x}_q) = \sigma_f^2 \exp(-\frac{1}{2}(\mathbf{x}_p - \mathbf{x}_q)^T M(\mathbf{x}_p - \mathbf{x}_q)) + \sigma_n^2 \delta_{pq}$$

where M can be:

- $M = l^{-2}I$: this is equal to the above case
- $M = \operatorname{diag}(l_1, \dots, l_D)^{-2}$: every feature dimension has its own length scale parameter
- $M = \Lambda \Lambda^T + \mathrm{diag}(l_1, \dots, l_D)^{-2}$: here Λ has less than D columns

Varying the Hyperparameters



To find optimal hyper parameters we need the marginal likelihood:

$$p(\mathbf{y} \mid X) = \int p(\mathbf{y} \mid \mathbf{f}, X) p(\mathbf{f} \mid X) d\mathbf{f}$$

This expression implicitly depends on the hyper parameters, but y and X are given from the training data. It can be computed in closed form, as all terms are Gaussians.

We take the logarithm, compute the derivative and set it to θ . This is the **training** step.

To find optimal hyper parameters we need the marginal likelihood:

$$p(\mathbf{y} \mid X) = \frac{1}{\sqrt{(2\pi)^n |K|}} \exp\left(-\frac{1}{2}\mathbf{y}^T K^{-1}\mathbf{y}\right)$$

To find optimal hyper parameters we need the marginal likelihood:

$$p(\mathbf{y} \mid X) = \frac{1}{\sqrt{(2\pi)^n |K|}} \exp\left(-\frac{1}{2}\mathbf{y}^T K^{-1}\mathbf{y}\right)$$

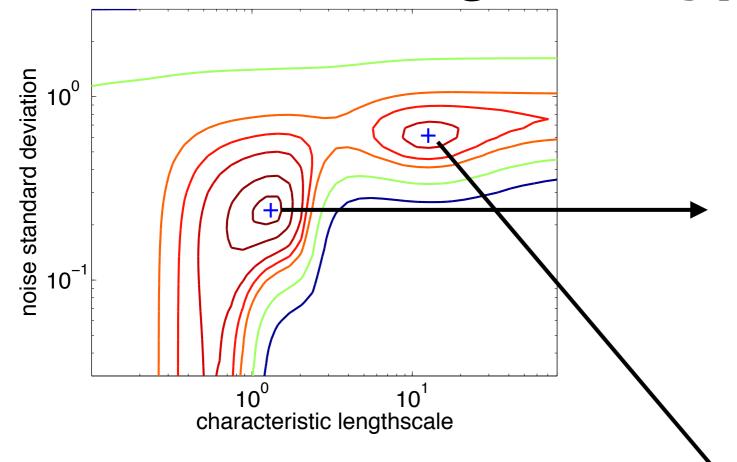
$$\log p(\mathbf{y} \mid X) = -\frac{1}{2} \log((2\pi)^n |K|) - \frac{1}{2} \mathbf{y}^T K^{-1} \mathbf{y}$$

To find optimal hyper parameters we need the marginal likelihood:

$$p(\mathbf{y} \mid X) = \frac{1}{\sqrt{(2\pi)^n |K|}} \exp\left(-\frac{1}{2}\mathbf{y}^T K^{-1}\mathbf{y}\right)$$

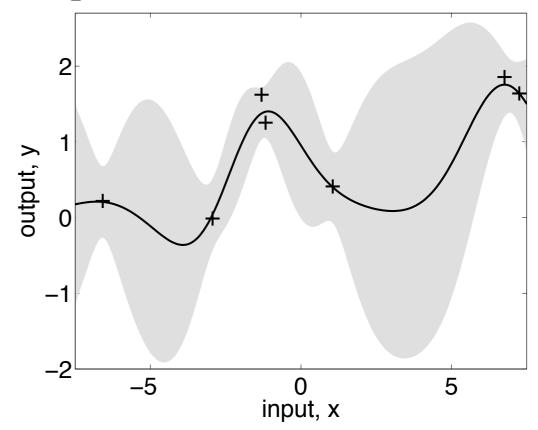
$$\log p(\mathbf{y} \mid X) = -\frac{1}{2} \log((2\pi)^n |K|) - \frac{1}{2} \mathbf{y}^T K^{-1} \mathbf{y}$$

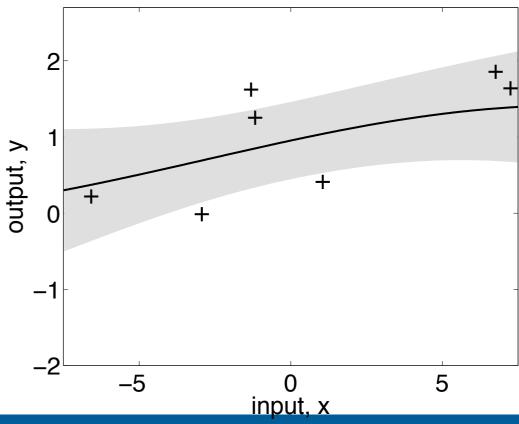
$$\frac{\partial \log p(\mathbf{y} \mid X)}{\partial \theta_i} = \frac{1}{2} \mathbf{y}^T K^{-1} \frac{\partial K}{\partial \theta_i} \mathbf{y} - \frac{1}{2} \operatorname{tr} \left(K^{-1} \frac{\partial K}{\partial \theta_i} \right)$$



The log marginal likelihood is not necessarily concave, i.e. it can have local maxima.

The local maxima can correspond to sub-optimal solutions.





Automatic Relevance Determination

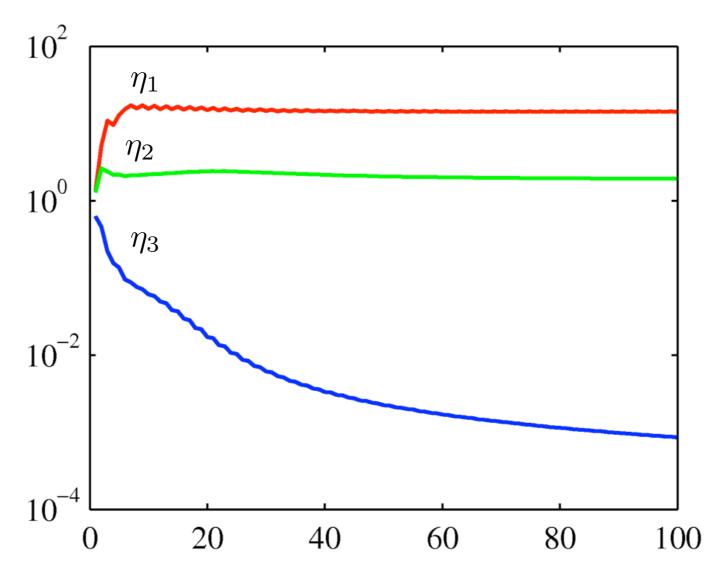
- We have seen how the covariance function can be generalized using a matrix M
- If M is diagonal this results in the kernel function

$$k(\mathbf{x}, \mathbf{x}') = \sigma_f \exp\left(\frac{1}{2} \sum_{i=1}^{D} \eta_i (x_i - x_i')^2\right)$$

- We can interpret the η_i as weights for each feature dimension
- Thus, if the length scale $l_i = 1/\eta_i$ of an input dimension is large, the input is less relevant
- During training this is done automatically

Automatic Relevance Determination

3-dimensional data, parameters η_1 η_2 η_3 as they evolve during training

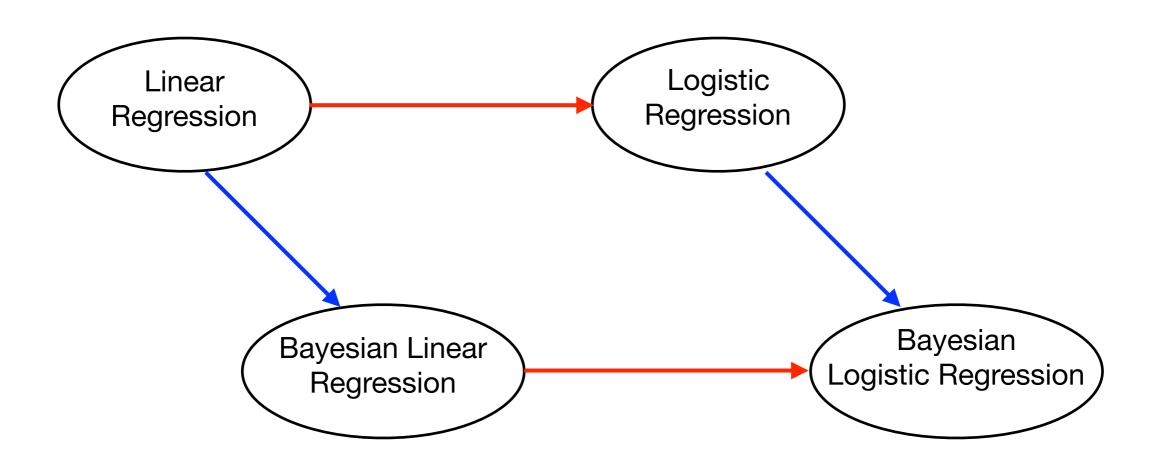


During the optimization process to learn the hyper-parameters, the reciprocal length scale for one parameter decreases, i.e.:

This hyper parameter is not very relevant!

Gaussian Processes - Classification

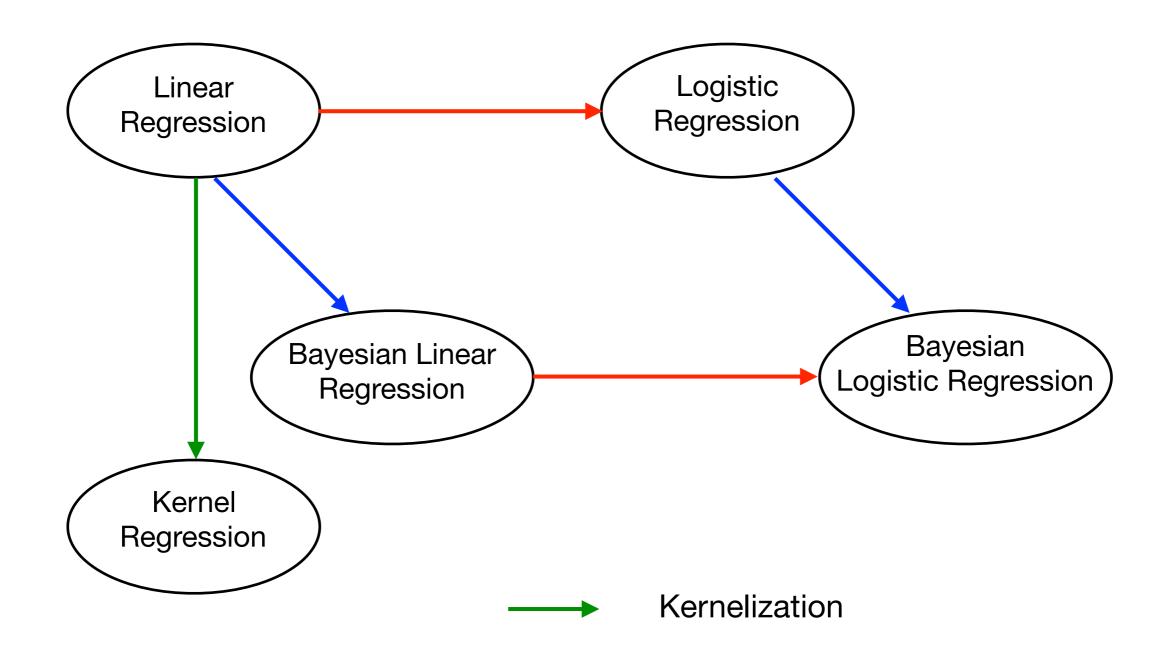
Remember the Visualisation



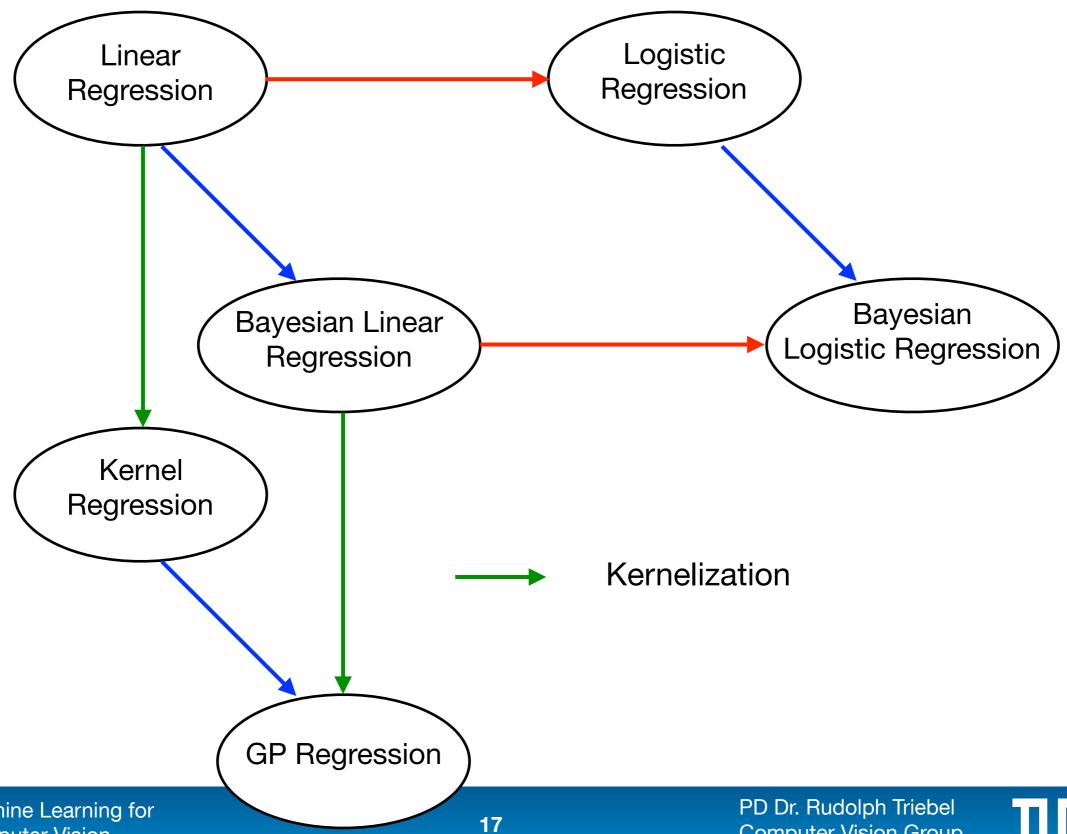
probabilistic reasoning

from regression to classification

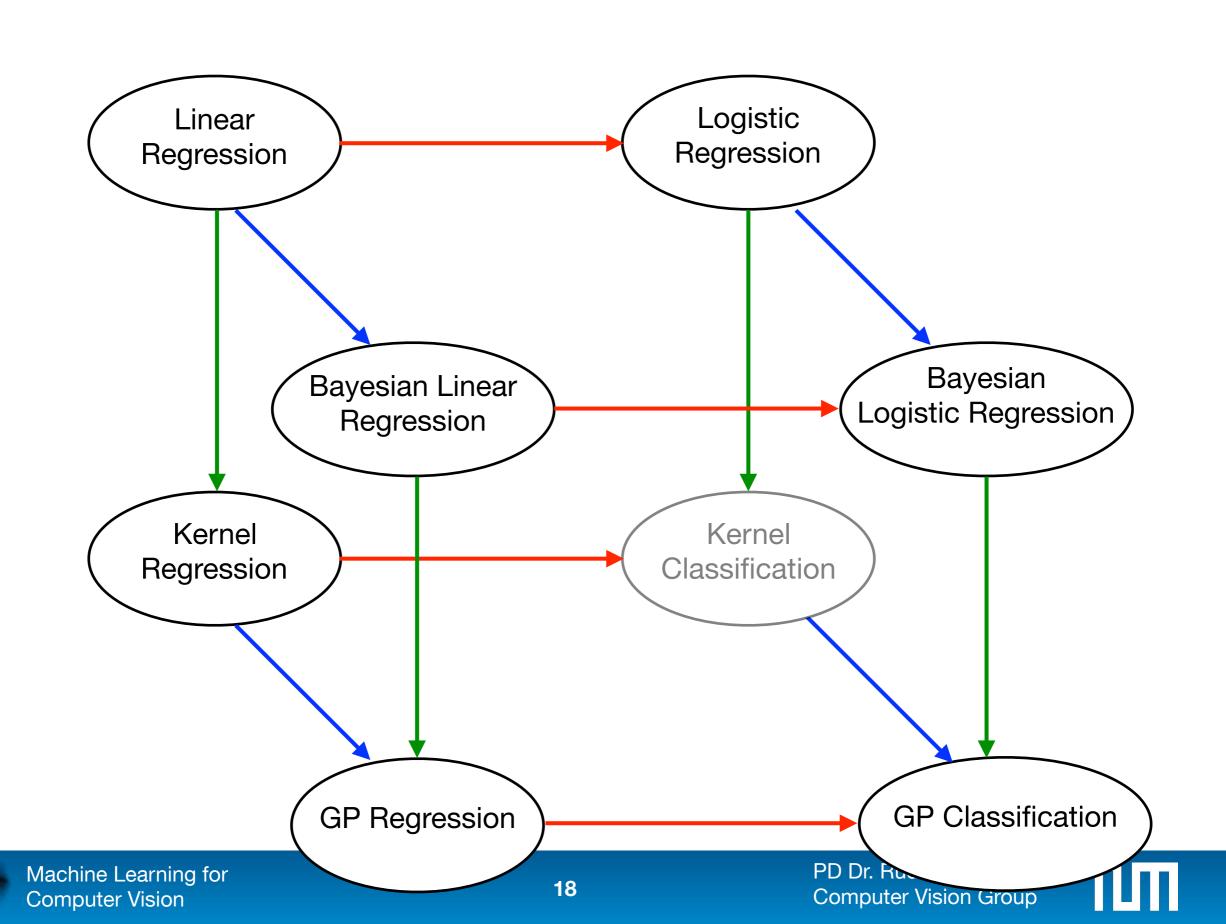
Kernelization as a New Dimension



Kernelization as a New Dimension



Kernelization as a New Dimension



Gaussian Processes For Classification

In regression we have $y \in \mathbb{R}$, in binary classification we have $y \in \{-1, 1\}$

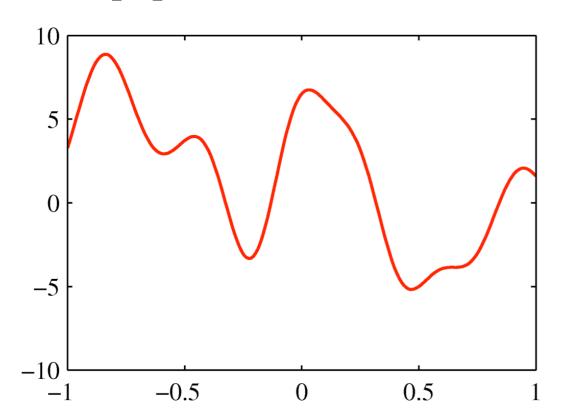
To use a GP for classification, we can apply a **sigmoid** function to the posterior obtained from the GP and compute the class probability as:

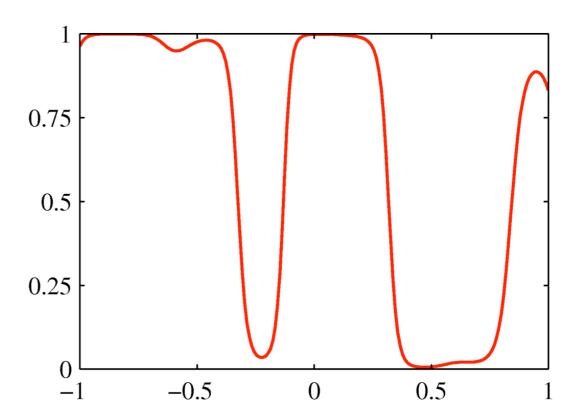
$$p(y = +1 \mid \mathbf{x}) = \sigma(f(\mathbf{x}))$$

If the sigmoid function is symmetric: $\sigma(-z) = 1 - \sigma(z)$ then we have $p(y \mid \mathbf{x}) = \sigma(yf(\mathbf{x}))$.

A typical type of sigmoid function is the logistic sigmoid: $\sigma(z) = \frac{1}{1 + \exp(-z)}$

Application of the Sigmoid Function





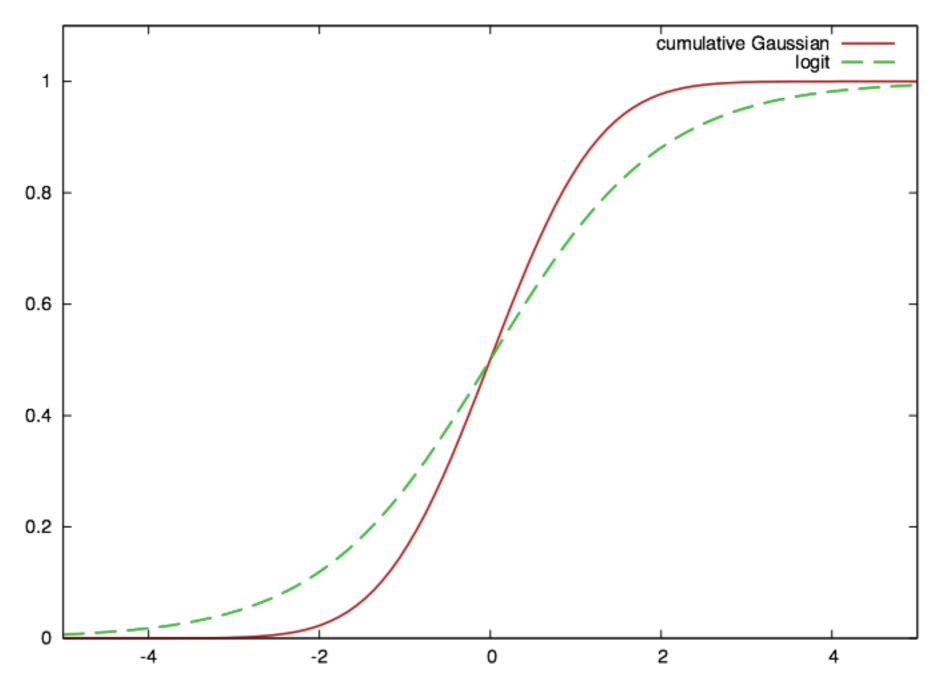
Function sampled from a Gaussian Process

Sigmoid function applied to the GP function

Another symmetric sigmoid function is the cumulative Gaussian:

$$\Phi(z) = \int_{-\infty}^{z} \mathcal{N}(x \mid 0, 1) dx$$

Visualization of Sigmoid Functions



The cumulative Gaussian is slightly steeper than the logistic sigmoid

The Latent Variables

In regression, we directly estimated f as

$$f(\mathbf{x}) \sim \mathcal{GP}(m(\mathbf{x}), k(\mathbf{x}, \mathbf{x}'))$$

and values of *f* where observed in the training data. Now only labels +1 or -1 are observed and *f* is treated as a set of **latent variables.**

A major advantage of the Gaussian process classifier over other methods is that it **marginalizes** over all latent functions rather than maximizing some model parameters.

Class Prediction with a GP

The aim is to compute the predictive distribution

$$p(y_* = +1 \mid X, \mathbf{y}, \mathbf{x}_*) = \int p(y_* \mid f_*) p(f_* \mid X, \mathbf{y}, \mathbf{x}_*) df_*$$

Class Prediction with a GP

The aim is to compute the predictive distribution

$$p(y_* = +1 \mid X, \mathbf{y}, \mathbf{x}_*) = \int p(y_* \mid f_*) p(f_* \mid X, \mathbf{y}, \mathbf{x}_*) df_*$$

we marginalize over the latent variables from the training data:

$$p(f_* \mid X, \mathbf{y}, \mathbf{x}_*) = \int p(f_* \mid X, \mathbf{x}_*, \mathbf{f}) p(\mathbf{f} \mid X, \mathbf{y}) d\mathbf{f}$$

predictive distribution of the latent variable (from regression)

Class Prediction with a GP

The aim is to compute the predictive distribution

$$p(y_* = +1 \mid X, \mathbf{y}, \mathbf{x}_*) = \int p(y_* \mid f_*) p(f_* \mid X, \mathbf{y}, \mathbf{x}_*) df_*$$

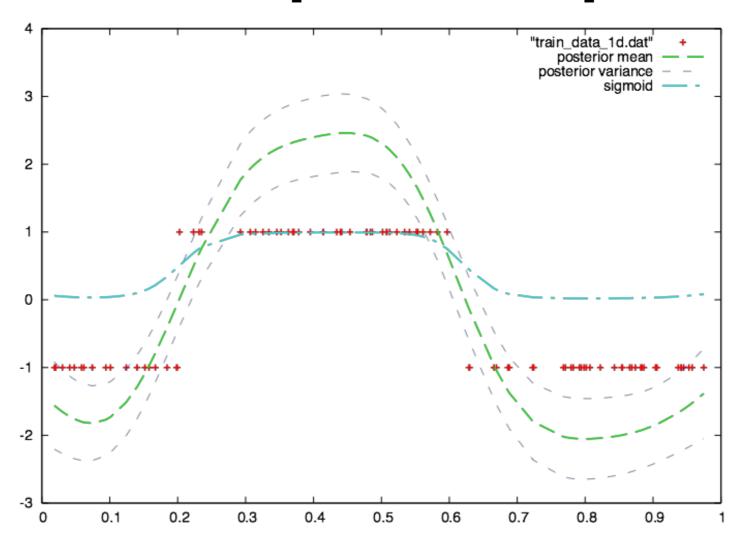
we marginalize over the latent variables from the training data:

$$p(f_* \mid X, \mathbf{y}, \mathbf{x}_*) = \int p(f_* \mid X, \mathbf{x}_*, \mathbf{f}) p(\mathbf{f} \mid X, \mathbf{y}) d\mathbf{f}$$

we need the posterior over the latent variables:

(sigmoid)
$$p(\mathbf{f}\mid X,\mathbf{y}) = \frac{p(\mathbf{y}\mid \mathbf{f})p(\mathbf{f}\mid X)}{p(\mathbf{y}\mid X)}$$
 prior normalizer

A Simple Example



- Red: Two-class training data
- Green: mean function of $p(\mathbf{f} \mid X, \mathbf{y})$
- Light blue: sigmoid of the mean function

But There Is A Problem...

$$p(\mathbf{f} \mid X, \mathbf{y}) = \frac{p(\mathbf{y} \mid \mathbf{f})p(\mathbf{f} \mid X)}{p(\mathbf{y} \mid X)}$$

- The likelihood term is not a Gaussian!
- This means, we can not compute the posterior in closed form.
- There are several different solutions in the literature, e.g.:
 - Laplace approximation
 - Expectation Propagation
 - Variational methods

Consider a general distribution

$$p(z) = \frac{1}{Z}f(z)$$
 where $Z = \int f(z)dz$

Consider a general distribution

$$p(z) = \frac{1}{Z}f(z)$$
 where $Z = \int f(z)dz$

Aim: approximate this with a normal distribution

$$q(\mathbf{f}) = \mathcal{N}(\mathbf{f} \mid \mathbf{\hat{f}}, A^{-1})$$

$$\mathbf{f}_{new} = \mathbf{f} - (\nabla \nabla \Psi)^{-1} \nabla \Psi$$

$$A = K^{-1} + W$$

$$p(\mathbf{f} \mid X, \mathbf{y}) \approx q(\mathbf{f} \mid X, \mathbf{y}) = \mathcal{N}(\mathbf{f} \mid \hat{\mathbf{f}}, A^{-1})$$

where
$$\hat{\mathbf{f}} = \arg\max_{\mathbf{f}} p(\mathbf{f} \mid X, \mathbf{y})$$

and $A = -\nabla\nabla\log p(\mathbf{f} \mid X, \mathbf{y})|_{\mathbf{f} = \hat{\mathbf{f}}}$

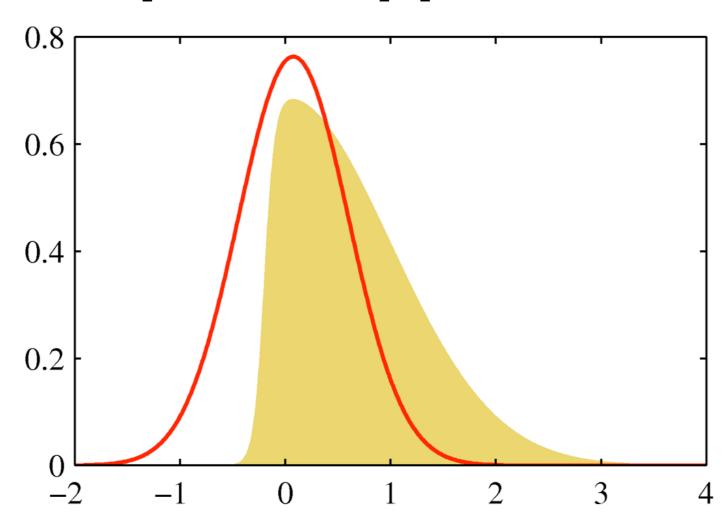
second-order
Taylor expansion

To compute f an iterative approach using Newton's method has to be used.

The Hessian matrix A can be computed as

$$A = K^{-1} + W$$

where $W = -\nabla\nabla \log p(\mathbf{y} \mid \mathbf{f})$ is a diagonal matrix which depends on the sigmoid function.



- Yellow: a non-Gaussian posterior
- Red: a Gaussian approximation, the mean is the mode of the posterior, the variance is the negative second derivative at the mode

Predictions

Now that we have $p(\mathbf{f} \mid X, \mathbf{y})$ we can compute:

$$p(f_* \mid X, \mathbf{y}, \mathbf{x}_*) = \int p(f_* \mid X, \mathbf{x}_*, \mathbf{f}) p(\mathbf{f} \mid X, \mathbf{y}) d\mathbf{f}$$

From the regression case we have:

$$p(f_* \mid X, \mathbf{x}_*, \mathbf{f}) = \mathcal{N}(f_* \mid \mu_*, \Sigma_*)$$
 where $\mu_* = \mathbf{k}_*^T K^{-1} \mathbf{f}$
$$\Sigma_* = k(\mathbf{x}_*, \mathbf{x}_*) - \mathbf{k}_*^T K^{-1} \mathbf{k}_*$$

Linear in f

This reminds us of a property of Gaussians that we saw earlier!

Gaussian Properties (Rep.)

If we are given this:

$$p(\mathbf{x}) = \mathcal{N}(\mathbf{x} \mid \mu, \Sigma_1)$$

II.
$$p(\mathbf{y} \mid \mathbf{x}) = \mathcal{N}(\mathbf{y} \mid A\mathbf{x} + \mathbf{b}, \Sigma_2)$$

Then it follows (properties of Gaussians):

III.
$$p(\mathbf{y}) = \mathcal{N}(\mathbf{y} \mid A\mu + \mathbf{b}, \Sigma_2 + A\Sigma_1 A^T)$$

IV.
$$p(\mathbf{x} \mid \mathbf{y}) = \mathcal{N}(\mathbf{x} \mid \Sigma(A^T \Sigma_2^{-1} (\mathbf{y} - \mathbf{b}) + \Sigma_1^{-1} \mathbf{y}), \Sigma)$$

where

$$\Sigma = (\Sigma_1^{-1} + A^T \Sigma_s^{-1} A)^{-1}$$

Applying this to Laplace

$$\mathbb{E}[f_* \mid X, \mathbf{y}, \mathbf{x}_*] = \mathbf{k}(\mathbf{x}_*)^T K^{-1} \hat{\mathbf{f}}$$

$$\mathbb{V}[f_* \mid X, \mathbf{y}, \mathbf{x}_*] = k(\mathbf{x}_*, \mathbf{x}_*) - \mathbf{k}_*^T (K + W^{-1})^{-1} \mathbf{k}_*$$

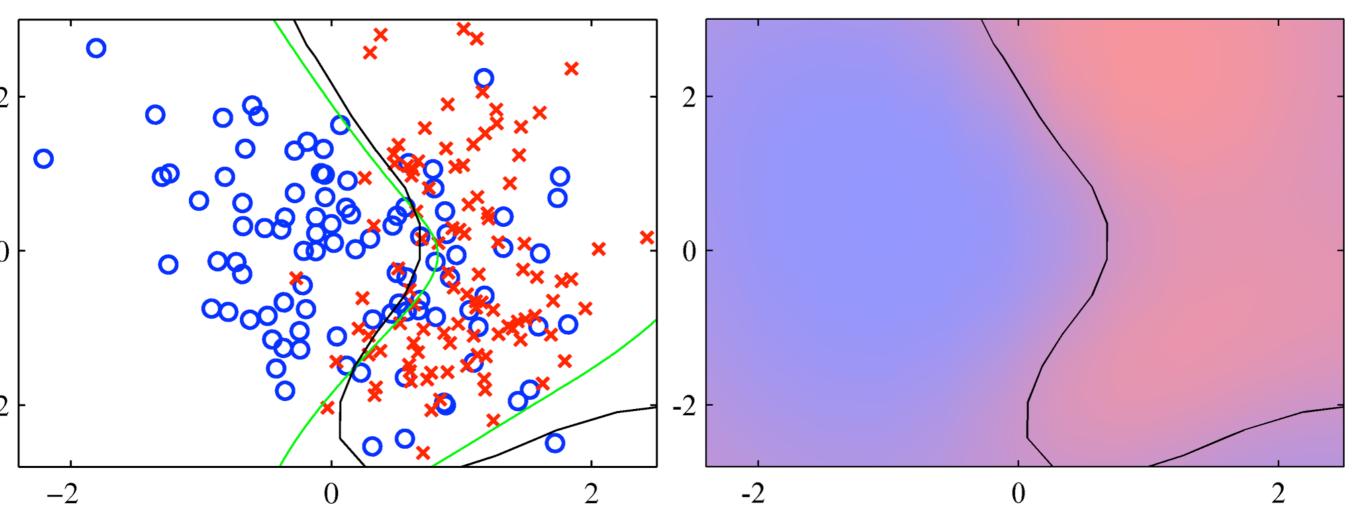
It remains to compute

$$p(y_* = +1 \mid X, \mathbf{y}, \mathbf{x}_*) = \int p(y_* \mid f_*) p(f_* \mid X, \mathbf{y}, \mathbf{x}_*) df_*$$

Depending on the kind of sigmoid function we

- can compute this in closed form (cumulative Gaussian sigmoid)
- have to use sampling methods or analytical approximations (logistic sigmoid)

A Simple Example



- Two-class problem (training data in red and blue)
- Green line: optimal decision boundary
- Black line: GP classifier decision boundary
- Right: posterior probability

Summary

- Kernel methods solve problems by implicitly mapping the data into a (high-dimensional) feature space
- The feature function itself is not used, instead the algorithm is expressed in terms of the kernel
- Gaussian Processes are Normal distributions over functions
- To specify a GP we need a covariance function (kernel) and a mean function
- More on Gaussian Processes: http://videolectures.net/epsrcws08_rasmussen_lgp/

