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7. Gaussian Processes (contd.)



Prediction with a Gaussian Process

In the case of only one test point x* we have
k(x1,Xy)
k(XN, Xy )
Now we compute the conditional distribution
p(y* | X*7X7 Y) :N(y* | H*az*)
where
e = ki Kt
Yo = k(Xy, Xy) — k>,<TK_1k>k

This defines the predictive distribution.
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Implementation

Algorithm 1: GP regression

Data: training data (X,y), test data x,
Input: Hyper parameters 0?, [, 02

Kij + k(xi,x;) : — Precomputed
L < cholesky(K + o;1) during Training
o LT\ (L\y) —
T f.] « kI T
oA Ik Test Phase

T

var|f.| < k(X4,X4) — V'V —
logp(y | X) < —5y"a—3;log Ly — 5 log(2)

* Cholesky decomposition is numerically stable
e Can be used to compute inverse efficiently
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Varying the Hyperparameters

| | =0.3,
1 ° w O’f — 108,
| | o, =0.0005
l p— O'f p— ]_, O'n — O ]_ 3
| £ | =3
* 20 data samples
. L : o| et |
* GP prediction with L o =1.16
different kernel " 2
_ h o
hyper parameters |+~ | =08
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Varying the Hyperparameters

The squared exponential covariance function can
be generalized to

1
k(xp,Xq) = 012” exp(—§(xp — Xq)TM(Xp —Xq)) + Uiépq

where M can be:
® M =1"*I:thisis equal to the above case

o M =diag(ly,...,Ip) " : every feature dimension
has its own length scale parameter

o M = AA" +diag(l1,...,Ip) "+ here A has less than
D columns
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Varying the Hyperparameters
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M = + diag(6,6)
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Estimating the Hyperparameters

To find optimal hyper parameters we need the
marginal likelihood:

ply | X) = /p(y |, X)p(f | X)df

This expression implicitly depends on the hyper

parameters, but y and X are given from the
training data. It can be computed in closed form,
as all terms are Gaussians.

We take the logarithm, compute the derivative
and set it to 0. This is the training step.
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Estimating the Hyperparameters

To find optimal hyper parameters we need the
marginal likelihood:

1 |
ply | X) = \/(27r)”\K| eXp (—53’ K Y)
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Estimating the Hyperparameters

To find optimal hyper parameters we need the
marginal likelihood:

1 |
ply | X) = \/(277)”\K| eXp (—53’ K Y)

1 1 o
log p(y | X) = =5 log((2m)"|K|) — 5y K™y
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Estimating the Hyperparameters

To find optimal hyper parameters we need the
marginal likelihood:

1 ( 1 T -1 )
eX — =
JemrEl T\ 2 T

1 ) 1 oo
log p(y | X) = =5 log((2m)"|K|) — 5y K™y

ply | X) =
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noise standard deviation

'Estimating the Hyperparameters

2,
10° +
+
> 1
> *Cgl 0
107"} 1l
AL Y ) ‘
0 1 -5 0 )
char1aocteristic Iength1s(c):ale input, x
The log marginal likelihood is 2| . .
not necessarily concave, i.e. it | /
can have local maxima. R ¥
_ 320 + f
The local maxima can
correspond to sub-optimal -1
solutions. P
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Automatic Relevance Determination

e \\Ne have seen how the covariance function can
be generalized using a matrix M

*|f M is diagonal this results in the kernel function

k(x,x") afexp( an )

e \We can interpret the 7; as weights for each
feature dimension

* Thus, If the length scale I, = 1/7; of an input
dimension is large, the input is less relevant

e During training this is done automatically
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Automatic Relevance Determination

107
3-dimensional no_
data, parameters Mo
m n2 M3 as they 0
evolve during 10° T
training "3

10~

10~ - - - -

0 20 40 60 80 100

During the optimization process to learn the
hyper-parameters, the reciprocal length scale for
one parameter decreases, I.e.:

This hyper parameter is not very relevant!
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Remember the Visualisation

Logistic
Regression

Linear
Regression

Bayesian

Bayesian Linear
»| Logistic Regression

Regression

— probabilistic reasoning

from regression to
classification
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Kernelization as a New Dimension

Logistic
Regression

Linear
Regression

Bayesian

Bayesian Linear
»| Logistic Regression

Regression

Kernel
Regression

— Kernelization
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Kernelization as a New Dimension

Linear
Regression

Logistic
Regression

Bayesian Linear Bayesian

Regressioy »{ Logistic Regression

Kernel
Regression

e Kernelization

GP Regression

Machine Learning for PD Dr. Rudolph Triebel
Computer Vision Computer Vision Group



Kernelization as a New Dimension

Linear

Logistic

Regression

Bayesian Linear

Regression

Bayesian

Reg ressioy

Kernel

»| Logistic Regression

Kernel

Regression

GP Regression

Classification

»( GP Classification
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Gaussian Processes For Classification

In regression we have y € R, In binary
classification we have y e {-1;1}

To use a GP for classification, we can apply a
sigmoid function to the posterior obtained from

the GP and compute the class probability as:

ply =+1[x) =0(f(x))
If the sigmoid function is symmetric:o(—2) =1 — o(2)
then we have p(y | x) = o(yf(x)).

A typical type of sigmoid function is the logistic
sigmoid: o (2) 1

T 1+ exp(—2)
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Appllcatlon of the SlngId Function

Y ()
0.75 p
0.5¢
St . 0257t
-10 - ' - 0 - v - u
—1 -0.5 0 0.5 1 —1 -0.5 0 0.5 1
Function sampled from Sigmoid function applied to
a Gaussian Process the GP function

Another symmetric sigmoid function is the
cumulative Gaussian:

/ N(z|0,1)dz
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Visualization of Sigmoid Functions

1 ]
cumulative Gaussian

logit — —
1F -
0.8 |-
0.6 |
04 |
0.2
0———-"1" 1 | | |
4 2 0 2 4

The cumulative Gaussian is slightly steeper than
the logistic sigmoid
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The Latent Variables

In regression, we directly estimated fas

f(x) ~ GP(m(x), k(x,x'))
and values of f'where observed in the training
data. Now only labels +1 or -1 are observed and

f Is treated as a set of latent variables.

A major advantage of the Gaussian process
classifier over other methods is that it

marginalizes over all latent functions rather
than maximizing some model parameters.
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Class Prediction with a GP

The aim is to compute the predictive distribution

Py = +1] X, y,%.) = / Py | FOD(fe | X,y %) df

o(f+)
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Class Prediction with a GP

The aim is to compute the predictive distribution

Py = +1] X, y,%.) = / Py | FOD(fa | X,y %) df

we marginalize over the latent variables from the
training data:

p(fu | X,y %) — / p(fu | X, %0, E)p(E | X, y)df

predictive distribution of the
latent variable (from regression)
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Class Prediction with a GP

The aim is to compute the predictive distribution

Py = +1] X, y,%.) = / Py | FOD(fa | X,y %) df

we marginalize over the latent variables from the
training data:

p(fu | X,y %) — / p(fu | X, %0, E)p(E | X, y)df

we need the posterior over the latent variables:

likelihood £ £l x o
(siamoid) p(f | X, y> _ p(y | )p( ‘ ) |

p(y ‘ X) normalizer
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A Simple Example

4 L R 1 T
“train_data_1d.dat" +
posterior mean — —
posterior variance
igmoid
3 B \
2 v \
VA RN \
A A\
1 + +l' / + R At s —‘~+0-+~—“.‘--H“+J+H<H\+
¥y \ \
1 4+ k=g ++4;+ kS 1\+ - R e i
/ N\ 7 - 7 P
N 0 YN\ -
2 - ~ — e o —
-3 | 1 1 | 1 1 Il 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 09 1

e Red: Two-class training data
e Green: mean function of p(f | X,y)
e | ight blue: sigmoid of the mean function
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But There Is A Problem...

p(y | £)p(f | X)
p(y | X)

p(f| X,y) =

e The likelihood term is not a Gaussian!

* This means, we can not compute the
posterior in closed form.

e There are several different solutions in the
literature, e.q.:

o[ aplace approximation
e Expectation Propagation

eVariational methods
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Laplace Approximation

Consider a general distribution

p(z) = %f(z) where Z:/f(z)dz
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Laplace Approximation

Consider a general distribution

p(z) = %f(z) where Z:/f(z)dz

Aim: approximate this with a normal distribution

frew =f — (VVU) 'V

A=K '+W
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Laplace Approximation

p(f | X,y) ~q(f | X,y) =N(f |, A

where f = arg m?Xp(f | X,y) second-order
and A=-VV 1ng(f ‘ X, Y)‘f:f‘ Taylor expansion

To compute f an iterative approach using
Newton’s method has to be used.

The Hessian matrix A4 can be computed as

A=K '4+W
where W = -VVlogp(y | f) Is a diagonal matrix
which depends on the sigmoid function.
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Laplace Approximation

0.8

0.6 |

0.4}

0.2}

O 1 1 1 1 1
-2 —1 0 1 2 3 4

* Yellow: a non-Gaussian posterior

e Red: a Gaussian approximation, the mean is
the mode of the posterior, the variance is the
negative second derivative at the mode
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Predictions

Now that we have p(f | X,y) we can compute:

p(fu | X,y %) — / p(fo | X, %0, E)p(E | X, y)df

From the regression case we have:

p(f* ‘ X7X*7f) :N(f* | ,LL*,Z*)
where u, =k! K~ 'f Y. = k(xy,x.) — ki K 'k,

Linear in f

This reminds us of a property of Gaussians that
we saw earlier!
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Gaussian Properties (Rep.)

If we are given this:
. p(x) = N(x | p, 1)

Il. p(y|x)=N(y|Ax + b, %)
Then it follows (properties of Gaussians):

. p(y) =N(y | Ap+b, 3 + AL AT)
V. p(x|y)=N(Ex|Z(A'Z (y—b)+ 3 y), %)
where

Y= ( 4+ ATS A

Machine Learning for PD Dr. Rudolph Triebel
Computer Vision Computer Vision Group



Applying this to Laplace

i f | X,y,x.] =k(x,)"K~'f
V[fe | X,y,%x.] = k(xy, %) —kI(K+WH 'k,

It remains to compute

Py = +1] X, y,%0) = / oy | fp(fs | X,y %.)df.

Depending on the kind of sigmoid function we

® can compute this in closed form (cumulative
Gaussian sigmoid)

® have to use sampling methods or analytical
approximations (logistic sigmoid)
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A Simple Example

o * )
¢ 12
) o 0% Xx Xx
o o do 3 x’}x
@ooo x 8
) ooS "ng . 4
O % X% ¢
QOO X x
oFS BB
o b 4
1 /-2
-2 0 2 -2 0 2

e Two-class problem (training data in red and blue)
e Green line: optimal decision boundary

e Black line: GP classifier decision boundary

e Right: posterior probability
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Summary

« Kernel methods solve problems by implicitly mapping
the data into a (high-dimensional) feature space

« The feature function itself is not used, instead the
algorithm is expressed in terms of the kernel

o (Gaussian Processes are Normal distributions over
functions

 To specify a GP we need a covariance function
(kernel) and a mean function

« More on Gaussian Processes:
http://videolectures.net/epsrcws08_rasmussen_Ilgp/
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