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• This incorporates the following Markov assumptions:

Graphical Representation (Rep.)

We can describe the overall process using a 
Dynamic Bayes Network:

(measurement)

(state)
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Definition
A Probabilistic Graphical Model is a diagrammatic 

representation of a probability distribution. 

• In a Graphical Model, random variables are 
represented as nodes, and statistical dependencies 
are represented using edges between the nodes. 

• The resulting graph can have the following properties: 
• Cyclic / acyclic 
• Directed / undirected 
• The simplest graphs are Directed Acyclic Graphs 

(DAG).
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Simple Example

• Given: 3 random variables    ,    , and  

• Joint prob: 

A Graphical Model based on a DAG is called a  
Bayesian Network

Random 
variables can be 

discrete or 
continuous
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Simple Example

• In general:       random variables 
• Joint prob: 

• This leads to a fully connected graph. 
• Note: The ordering of the nodes in such a fully 

connected graph is arbitrary. They all represent the 
joint probability distribution:

…
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Bayesian Networks

Statistical independence can be represented by the 
absence of edges. This makes the computation 
efficient. 

                                          
  Intuitively: only      and  
   have an influence on 
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Bayesian Networks

We can now define a mapping from graphical 
models to probabilistic formulations 
(factorisations) and back:

General Factorisation:

where

and
ancestors of
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Note: Many different factorisations (and 
graphs) can represent the same distribution
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Elements of Graphical Models 

In case of a series of random variables with equal 
dependencies, we can subsume them using a plate:

Plate
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Elements of Graphical Models (2) 

We distinguish between input variables and explicit 
hyper-parameters:

!10



PD Dr. Rudolph Triebel 
Computer Vision Group

Machine Learning for 
Computer Vision

Elements of Graphical Models (3) 

We distinguish between observed variables and 
hidden variables: 

                                

                 (deterministic  parameters omitted in formula)
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Example: Regression as a Graphical Model

Aim: Find a general expression to compute the 
predictive distribution: 

This expression should 

• model all conditional independencies 
• explicitly incorporate all parameters (also the   
deterministic ones)  

!12

Notation:

t̂ = t⇤
p(t̂ | x̂,x, t)

Bishop vs.  
Rasmussen
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Notation:

t̂ = t⇤
p(t̂ | x̂,x, t)

Bishop vs.  
Rasmussen

p(t̂ | x̂,x, t,↵,�2) =

Z
p(t̂,w | x̂,x, t,↵,�2)dw

=

Z
p(t̂,w, t | x̂,x,↵,�2)

p(t | x̂,x,↵,�2)
dw /

Z
p(t̂,w, t | x̂,x,↵,�2)dw
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Regression as a Graphical Model

Here: conditioning on all  
deterministic parameters

Regression: Prediction of a new target value 

Using this, we can obtain 
the predictive distribution: 
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Notation:

t̂ = t⇤
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Example: Discrete Variables

• Two dependent variables: K2 - 1 parameters 

• Independent joint distribution: 2(K – 1) parameters

1 0.2

2 0.8

1 1 0.25

1 2 0.75

2 1 0.1

2 2 0.9

Here: K = 2
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Discrete Variables: General Case

In a general joint distribution with M variables we need 
to store KM -1 parameters 

If the distribution can be described by this graph: 

then we have only K -1 + (M -1) K(K -1) parameters.  
This graph is called a Markov chain with M  nodes. 
The number of parameters grows only linearly with  

the number of variables.
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Definition 1.4: Two random variables       and      are 
independent iff:   

 

 
  

 

For independent random variables       and      we have:  

 

 
  

 

Independence (Rep.)

Notation:

Independence does not imply conditional independence! 
The same is true for the opposite case.
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Conditional Independence (Rep.)

Definition 1.5: Two random variables       and      are 
conditional independent given a third random 
variable      iff:   

 

 
  

 

This is equivalent to:

and

Notation:
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Conditional Independence: Example 1

This graph represents the 
probability distribution: 

Marginalizing out c on 
both sides gives

Thus:      and     are not independent:
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This is in general not equal to             .p(a)p(b)
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Conditional Independence: Example 1

Now, we condition on    ( it is assumed to be known): 

Thus:      and      are conditionally independent given   : 
We say that the node at    is a tail-to-tail node on the 
path between     and  
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Conditional Independence: Example 2

This graph represents the 
distribution:

Again, we marginalize over   :

And we obtain:
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Conditional Independence: Example 2

As before, now we condition on    : 

And we obtain:

We say that the node at    is a head-to-tail node 
on the path between     and   .
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Conditional Independence: Example 3

Now consider this graph:

using:

we obtain:

And the result is:
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Conditional Independence: Example 3

Again, we condition on 

This results in:

We say that the node at    is a head-to-head node 
on the path between     and   .
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To Summarize

• When does the graph represent (conditional) 
independence? 
Tail-to-tail case: if we condition on the tail-to-tail node 
Head-to-tail case: if we cond. on the head-to-tail node 
Head-to-head case: if we do not condition on the head-
to-head node (and neither on any of its descendants) 

In general, this leads to the notion of D-separation for 
directed graphical models.
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