The Head-to-Head Node

; b Example:

a. Battery charged (0 or 1)

b: Fuel tank full (O or 1)

c. Fuel gauge says full (O or 1)
We can compute p(—c) =0.315

pla) =09  pb) =0.9

a b p(c|a,b) d b O 81
] ] 0.8 an p(=c | —b) = 0.

)i 0 02 aﬂd Obta|n p(_lb | _IC) ~ (0.257
0 I 0.2 similarly: p(=b| —¢, —a) ~ 0.111
’ ’ - “q explains ¢ away”
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D-Separation

Say: A, B, and C are non-intersecting subsets of
nodes in a directed graph.

A path from A to B is blocked by C if it contains
a nhode such that either

a) the arrows on the path meet either head-to-tail or tail-to-
tail at the node, and the node is in the set C, or

b) the arrows meet head-to-head at the node, and neither
the node, nor any of its descendants, are in the set C.

If all paths from A to B are blocked, A is said to
be d-separated from B by C.

Notation: dsep(A, B|O)
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D-Separation is a
property of graphs
and not of
probability
distributions

dsep(A, B|C)




D-Separation: Example

—dsep(a, b|c) dsep(a, b|f)
We condition on a descendant We condition on a tail-to-tail
of e, i.e. it does not blockthe  node on the only path from «
path from a to b. to b, i.e f blocks the path.

Machine Learning for PD Dr. Rudolph Triebel
Computer Vision Computer Vision Group




I-Map

Definition 4.1: A graph G is called an for a
distribution p if every D-separation of G corresponds
to a conditional independence relation satisfied by p:

VA,B,C :dsep(A,B,C)= A1l B|C

Example: The fully connected graph is an |-map for any
distribution, as there are no D-separations in that
graph.
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D-Map

Definition 4.2: A graph G is called an for a
distribution p if for every conditional independence
relation satisfied by p there is a D-separation in G :

VA,B,C: A 1L B|C = dsep(A, B,C)

Example: The graph without any edges is a D-map for
any distribution, as all pairs of subsets of nodes are
D-separated in that graph.
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Perfect Map
Definition 4.3: A graph G is called a for a
distribution p if it is a D-map and an |I-map of p.

VA,B,C : A1l B|(C < dsep(A, B,C)

A perfect map uniquely defines a probability distribution.
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The Markov Blanket

Consider a distribution of a node x; conditioned on
all other nodes:

p(Xh"'aXM)

/p(X17 SO 7XM)dX’£
HP(XHP%)
k

/ | [ p(x[pay)dx;
k

p(x; |X{j7éz'}) —

Factors independent of x;
cancel between numerator
and denominator.

x; . all parents, children
and co-parents of x.,.
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Directed Graphical Models

Directed graphical models
can be used to represent
probability distributions

This is useful to do
iInference and to generate
samples from the
distribution efficiently

p(x1,...,27) = p(x1)p(x2)p(@s)p(@a|21, T2, T3)
p(xs|z1, 23)p(26|T4)P(T7| T4, T5)
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Summary D-Separation

O—@—O

C

» D-separation is a property of graphs that can be
easily determined

 An |-map assigns every d-separation a c.l. rel
A D-map assigns every c.i. rel a d-separation
e Every Bayes net determines a unique prob. dist.
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Directed vs. Undirected Graphs

Using D-separation we can identify conditional
independencies In directed graphical models, but:

o |Is there a simpler, more intuitive way to express
conditional independence in a graph?

« Can we find a representation for cases where an
,ordering” of the random variables is inappropriate
(e.g. the pixels in a camera image)?

Yes, we can: by removing the directions of the
edges we obtain an Undirected Graphical Model,
also known as a Markov Random Field
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Example: Camera Image

e directions are counter-intuitive for images

e Markov blanket is not just the direct neighbors
when using a directed model
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Markov Random Fields

Aim: Find a simpler formulation of d-separation!
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Markov Random Fields

Aim: Find a simpler formulation of d-separation!

\\ ,I
o Al B|C

All paths from 4 to B go

through C, i.e. C should
block all paths.
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Markov Random Fields

Aim: Find a simpler formulation of d-separation!

e ol Al B|C

All paths from 4 to B go

through C, i.e. C should
block all paths.

Machine Learning for

Markov
Blanket

We only need to condition
on the of

x to get c.i., because these
already block every path

from x to any other node.

Computer Vision

PD Dr. Rudolph Triebel
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Factorization of MRFs

Any two nodes x; and x; that are not connected in an
MRF are conditionally independent given all other nodes:
p(xis x5 | X\(i,53) = p(@i | %\gi51)P(%5 | X\ (i53)

This means: each factor must contain only nodes that
are pairwise connected

This motivates the consideration
of cligues in the graph:

. A clique is a fully connected subgraph.

. A maximal cligue can not be extended
with another node without loosing the
property of full connectivity.

Clique

Maximal Clique
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Factorization of MRFs
In general, a Markov Random Field Is factorized as

% HCEC¢ (Xc <
p(x) = S o (% Ceﬂczp S (4.1)

where C is the set of all (maX|maI) cliques and¥.(x.) is

a positive function of a given clique x. of nodes, called
the clique potential. Z is called the partition function.

Theorem (Hammersley/Clifford): Any undirected
model with associated clique potentials 9. is a perfect

map for the probability distribution defined by Equation
(4.1).

As a conclusion, all probabillity distributions that can be
factorized as in (4.1), can be represented as an MRF.
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Converting Directed to Undirected Graphs (1)

1 I9 ITN_1 TN
p(x) = 33‘1)29(562\931 p(xs|z2) -+ plrN|TN-_1)
1 /
p(x) = E o(x1,x2) Y2 3(x2,23) - UN_1.N(TN-1,TN)
1 il IN_1 TN

In this case: Z=1
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Converting Directed to Undirected Graphs (2)

L L3 T1 T3

p(x) = p(x1)p(z2)p(w2)p(T4 | T1,72,73)

In general: conditional distributions in the directed graph
are mapped to cliques in the undirected graph

However: the variables are not conditionally independent
given the head-to-head node

Therefore: Connect all parents of head-to-head nodes with
each other (moralization)
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Converting Directed to Undirected Graphs (2)

£z L3 Tq T3
L2
 —
L4 T4
p(x) = p(z1)p(z2)p(z2)p(z4 | T1, 22, T3) p(x) = ¢(x1, 22,23, T4)

Problem: This process can remove conditional
independence relations (inefficient)

Generally: There is no one-to-one mapping between the
distributions represented by directed and by undirected

graphs.
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Representability

. As for DAGs, we can define an |-map, a D-map
and a perfect map for MRFs.

. The set of all distributions for which a DAG

exists that is a perfect map is different from
that for MRFs.

PD Dr. Rudolph Triebel
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A Simple Example

If a distribution p satisfies all conditional independence

relationships of this graph, then we can write p as

1

p(X) — 210123(%17@,$3)¢234($27$3,$4)¢35(£I’53aﬂ75)
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A Simple Example

How to define the potentials?

* |ntuitively, the potential of a
clique should be high, iff the
joint probability of the corres-
ponding random variables Is
high.

1

p(X) — E¢123($17$2,$3)¢234($27$3,$4)¢35(£I’53aﬂ75)
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A Simple Example

How to define the potentials?

* |ntuitively, the potential of a
clique should be high, iff the
joint probability of the corres-
ponding random variables Is
high.

* |[n most cases the potential is
defined using a log-linear
model:

log % (Xc) — ¢c (XC)TH
— AN

Feature function Parameters
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A Simple Example

How to define the potentials?

* |ntuitively, the potential of a
clique should be high, iff the
joint probability of the corres-
ponding random variables Is
high.

* |[n most cases the potential is
defined using a log-linear

model
log Ve(%c) = ¢o(xc)" 0 making the parameters explicit:
= logp(x | 0) = qu x.)'0 —log Z(0)

ceC
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A Simple Example

Using numbers, e.g.:

| et all variables be binary:
r; €{0,1}

e \We can define features ¢

1 ifa, =1Vne (i, k}
Cbzyk(xwxjvxk) o { 0 otherwise
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A Simple Example

Using numbers, e.g.:

| et all variables be binary:
r; €{0,1}

e \We can define features ¢

e and determine weights 0

1 ifa, =1Vne (i, k}
Cbzyk(xwxjvxk) o { 0 otherwise

6=(00000001)"
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A Simple Example

Using numbers, e.g.:

| et all variables be binary:
r; €{0,1}

e \We can define features ¢

e and determine weights 0

* Then, we can compute the
(log of the ) joint probability for
each realisation of the x;

logp(x | 0) = Z¢ x.)' 0 —log Z(0)

ceC
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A Simple Example

Using numbers, e.g.:

* The same graph can also be
interpreted as a binary MRF

* This a more specific
representation, but it is less
complex (and therefore more
efficient)

e |In Computer Vision, we almost
always use binary MRFs; they
are a specific case of general

, MRFs:

p(x) = 2%2@1,213‘2)1013(5131,$3)¢23($2,$3)¢24(5E2,$4)¢34($3,$4)¢35(CE3,$5)
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Using Graphical Models

We can use a graphical model to do inference:
« We want to find arg max p(x)

« Some nodes in the graph are observed, for others
we want to find the posterior distribution

« Also, computing the local marginal distribution p(x )
at any node x, can be done using inference.

Question: How can inference be done with a
graphical model?

We will see that, when exploiting conditional
independences, we can do efficient inference.
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Example Application: Denoising

Noise-free image Noisy image (observation)

Aim: Recover the noise-free image from the noisy one

We model the original image with variables z; € {—1,1}
and the noisy image with pixel values y; € {—1,1}
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Example Application: Denoising

e

Noise-free image Noisy image (observation)

Aim: Recover the noise-free image from the noisy one

We model the original image with variables z; € {—1,1}
and the noisy image with pixel values y; € {—1,1}

We consider the true pixel vales as hidden or latent
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Example Application: Denoising

b4

" @

“Ising model"

ye

We define two simple edge features:

O(Ti, i) = T3y O(xi, z5) = @iz,
These are multiplied by parameters 5 and 7:
log w(%, yz) — Ty log ¢(£IZZ, yz) — NT;Y;
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Example Application: Denoising

b4

ZIL,;/

ye

With this, we can compute the joint:
p(x,y | 1,8 HeXp NTiYs Hexp Briz;)
and its log:
log p(x,y | 1, 8) = nzxzyz + ﬁzx z; —log(Z

Machine Learning for PD Dr. Rudolph Triebel
Computer Vision Computer Vision Group




Example Application: Denoising
logp(x,y | 1,8) = 772%‘3/7; + 0 Z%‘%‘ — log(Z2)
) 1,7

Our aim now is to find the hidden stétes z; such that
this log of the joint is maximal (or at least very high).

Simple approach is Iterated Conditional Modes (ICM):
1. Initialize all z; by corresponding y;
2. For all nodes z; :
1.set z; to +1 and to -1 and evaluate logp(x,y | n, )
2. keep the value that gives higher log joint
This will keep or increase the joint in every step
The nodes can be visited in order or randomly
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Result of ICM

Theo

oise-free image

Result of ICM
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General Inference in MRFs

* |n general, we do not have such an easy model

* Therefore, we need more general inference
methods for MRF

* The major aim is to exploit sparsity in the
graphical model to make inference efficient
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Inference on a Chain

The joint probabillity is given by
p(x) = %1#1,2(%,$2)¢2,3($2,$3W3,4($3,$4W4,5($4,5135)
The marginal at x;is  pxs)=> > ) ) p(x)

1 X2 T4 Iy

In the general case with N nodes we have

p(X) — E¢1,2($1, $2)¢2,3($2, $3) " '1/JN—1,N($N—1, xN)

and IR IPIRD WL

Ln—1 Ln+1

Machine Learning for PD Dr. Rudolph Triebel
Computer Vision Computer Vision Group



Inference on a Chain

p(x3) = S: S: S: S:p(x)

1 X2 T4 Iy

 This would mean KN computations! A more efficient
way Is obtained by rearranging:

% >: >: >: > : h1,2(21, 2)V2,3(%2, ©3)Y3,4(T3, Ta)ha,5(24, T5)

I 9 x4 s

— % 9@ >: >: 101,2(%1, 332)192,3(3727 $3)¢3,4($3, x4)w4,5(x4, :195)

L2 T1 T4 Ts

= —szg T2,T3) Z% T1,T2) 21034 T3,T4) Z¢45 T4, Ts5)

12 ] P4 ]

p(x3)

Ma(g;gy_ Vectors of size K _wﬁ(mg)
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Inference on a Chain

Mo (xn—l) Na(xn) Pﬁ(mn) 13 (anrl)

In general, we have

p(Tn) = % an—l,n(xn—laxn)"‘ 2%,2(331,332)

Ln—1 | T
. =
N~

Z Vnm+1(Tpy Tpg1) -+ Z YN_1.N(ZTN-1,ZN)

Ln+1 _ TN -

. J/
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Inference on a Chain

The messages u, and u; can be computed
recursively: i

Z wn—l,n(xn—l,xn) Z -

Ln—1 Ln—2

Z wn—l,n(xn—la xn)ﬂa (xn—l)-

Ln—1

ta(Tn)

Z wn,n—kl(xn, .an_|_1) Z ce

Ln+1 Ln+2

16 (Zn )

Z Un,n+1(Tn, T ) 8 (Tng1)-

Ln+1

Computation of u, starts at the first node and
computation of x4, starts at the last node.
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Inference on a Chain

- The first values of 1, and u, are:

=) ¥12(a1,22) Hp(EN-1) ZwN 1N (TN -1, 2N)
L1

. The partition function can be computed at any node:

- Overall, we have O(NK?) operations to compute the
marginal p(zy,)
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Inference on a Chain

To compute local marginals:
.Compute and store all forward messages, o (zn).
-Compute and store all backward messages, (g(xn)

-Compute Z atanodex,: Z=)_ta(®m)us(@m)

Lm

-Compute 1
p(Tn) = Eﬂa (Tn) g (Tn)

for all variables required.
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More General Graphs

The message-passing algorithm can be extended to
more general graphs:

Undirected Directed

Tree Tree Polytree

It Is then known as the
A special case of this is
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Factor Graphs

« The Sum-product algorithm can be used to do
inference on undirected and directed graphs.

« A representation that generalizes directed and
undirected models is the

p(x) = p(z1)p(z2)p(ws|T1, T2) f(x1, 22, 23) = p(x1)p(x2)p(®s | 21, x2)
Directed graph Factor graph
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Factor Graphs

« The Sum-product algorithm can be used to do
inference on undirected and directed graphs.

« A representation that generalizes directed and
undirected models is the

£ Xo 45 X9

Y(xy, T2, x3) f(z1,22,23) = Y(x1, T2, 23)
Undirected graph Factor graph
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Factor Graphs

Factor graphs 11

e can contain multiple factors
for the same nodes

 are more general than -
undirected graphs

 are bipartite, i.e. they consist
of two kinds of nodes and all
edges connect nodes of

different kind
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Factor Graphs

: L1 I3
e Directed trees convert to

tree-structured factor graphs /

* The same holds for T4
undirected trees

e Also: directed polytrees
convert to tree-structured T4 O) =
factor graphs Ja

 And: Local cycles in a
directed graph can be
removed by converting to a T4
factor graph
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Sum-Product Inference in General Graphical Models

1.Convert graph (directed or undirected) into a
factor graph (there are no cycles)

2.1f the goal is to marginalize at node x, then
consider x as a root node
3.Initialize the recursion at the leaf nodes as:
nisz(x) =1 (var) or pe—ys(x) = f(z) (fac)
4.Propagate messages from the leaves to x

5.Propagate messages from x to the leaves

6.0btain marginals at every node by multiplying
all iIncoming messages
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Other Inference Algorithms

* Max-Sum algorithm: used to maximize the joint
probability of all variables (no marginalization)

e Junction Tree algorithm: exact inference for
general graphs (even with loops)

e | oopy belief propagation: approximate
inference on general graphs (more efficient)

Special kind of undirected GM:
e Conditional Random fields (e.g.: classification)
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Conditional Random Fields

« Another kind of undirected graphical model is known
as Conditional Random Field (CRF).

« CRFs are used for classification where labels are
represented as discrete random variables y and
features as continuous random variables x

« A CRF represents the conditional probability

e oc(xc,yoi;w)
P 1% W) = 5= T, o, v W)

where w are parameters learned from training data.
« CRFs are discriminative and MRFs are generative
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Conditional Random Fields

Derivation of the formula for CRFs:

o(y | %, w) = ply,x|w)  ply,x|w)  llg¢cxe,yo;w) Z

| px|w) Y py,x|w) Z > 1Ilcocxe,yo;w)
In the training phase, we compute parameters w that
maximize the posterior:

A

w = argmaxp(w | x,y) = argmaxp(y | x, w)p(w)

where (x,y) is the training data and p(w) is a Gaussian
prior. In the inference phase we maximize

argmaxp(y” | X", w)
y*
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CRF Training

We minimize the negative log-posterior:

w" =argmin{—Inp(w | x*,y")} = argmin{—Inp(y* | x*,w) — Inp(w)}

Computing the likelinood is intractable, as we have to

compute the partition function for each w. We can
approximate the likelihood using pseudo-likelihood:

p(y* | x*,w) &~ | [ olyr | M(y;),x*, w)
/

Markov blanket C:: All cliques containing y,

/

p(y; | M(y;),x", w)

where

N Zy; HC@- dc (ng ) yga ya : W)
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Pseudo Likelihood
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Pseudo Likelihood

Pseudo-likelihood is computed only on the Markov
blanket of y; and its corresp. feature nodes.
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Potential Functions

. The only requirement for the potential functions is
that they are positive. We achieve that with:

bc(xc,yo,w) :=exp(w' f(x¢,yc))
Where f is a compatibility function that is large if the
labels y fit well to the features x,.

. This is called the log-linear model.

 The function f'can be, e.g. a local classifier

Machine Learning for PD Dr. Rudolph Triebel
Computer Vision Computer Vision Group



Summary

e Undirected models (aka Markov random fields)
provide an intuitive representation of conditional
iIndependence

* An MRF Is defined as a factorization over
cligue potentials and normalized globally

* Directed and undirected models have different
representative power (no simple “containment”)

¢ Inference on undirected Markov chains is
efficient using message passing

* Factor graphs are more general; exact inference
can be done efficiently using sum-product
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