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Motivation

e Usually learning algorithms assume that some
kind of feature function is given

® Reasoning is then done on a feature vector of a
given (finite) length

e But: some objects are hard to represent with a
fixed-size feature vector, e.g. text documents,
molecular structures, evolutionary trees

* |dea: use a way of measuring similarity without
the need of features, e.g. the edit distance for
strings

e This we will call a kernel function
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Dual Representation

Many problems can be expressed using a dual
formulation. Example (linear regression):

1 N

J(w) = 9 Z(WT¢(XR) —tn)” + %WTW P(xn) € RY

n=1
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Dual Representation

Many problems can be expressed using a dual
formulation. Example (linear regression):

1 N

Tw) = 5 S W b 0P oW g(x,) € RY

n=1

it we write this in vector form, we get

1 1 A
Jw)=-wldlow —t'dw+ -t't+ =w'w teR"

2 2 2
o e RV

Machine Learning for PD Dr. Rudolph Triebel
Computer Vision Computer Vision Group



Dual Representation

Many problems can be expressed using a dual
formulation. Example (linear regression):
1 N

J(w) = 9 Z(WTgb(Xn) —tn)” + %WTW P(xn) € RY

n=1

it we write this in vector form, we get

1 1 A
Jw)=-wldlow —t'dw+ -t't+ =w'w teR"

2 2 2
o e RV

and the solution Is

w=(®'® 4+ N, D't
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Dual Representation

Many problems can be expressed using a dual
formulation. Example (linear regression):

1 1 A
J(w) = §WT(I)T(I)W —t' dw + §tTt — §WTW t c RY

w = (D' D+ N ) 10t

However, we can express this result in a different
way using the matrix inversion lemma:

(A+BCD) '=A"1'—A"'B(C"'+DA'B)"'DA™!

Machine Learning for PD Dr. Rudolph Triebel
Computer Vision Computer Vision Group



Dual Representation

Many problems can be expressed using a dual
formulation. Example (linear regression):

1 1 A
J(w) = §WT(I)T(I)W —t' dw + §tTt — §WTW t ¢ RY

w = (D' D+ N ) 10t

However, we can express this result in a different
way using the matrix inversion lemma:

(A+BCD) '=A"1'—A"'B(C"'+DA'B)"'DA™!

w =@ (®P' + Ny) 't
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Dual Representation

Many problems can be expressed using a dual
formulation. Example (linear regression):

1 1 A
J(w) = §WT(I)T(I)W —t' dw + §tTt — §WTW t c RY

w=(®'®+ ) TPt

w = (DD + N y) 't

-~ :
—=:'a “Dual Variables”
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Dual Representation

Many problems can be expressed using a dual
formulation. Example (linear regression):

1 1 A
J(w) = §WT(I)T(I)W —t' dw + §tTt — §WTW t c RY

w=(®'®+ ) TPt

w = (DD + N y) 't

-~ :
—=:'a “Dual Variables”

Plugging w = &'a Iinto J(w) gives:

1 A
J(a) = §aTchchprTa —al®d t +tit + §aT<I><I>Ta

Machine Learning for PD Dr. Rudolph Triebel
Computer Vision Computer Vision Group



Dual Representation

Many problems can be expressed using a dual
formulation. Example (linear regression):

1 1 A
J(w) = §WT(I)T(I)W —t' dw + §tTt — §WTW t c RY

1 1 A
J(a) = §aTKKa— al Kt + itTt + §aTKa K =o'

This is called the dual formulation.
Note: acRY weRM
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Dual Representation

Many problems can be expressed using a dual
formulation. Example (linear regression):

1 1 A
J(w) = §WT(I)T(I)W —t' dw + §tTt — §WTW t c RY

1 1 A
J(a) = §aTKKa —a' Kt + itTt — §aTKa

This is called the dual formulation.
The solution to the dual problem is:

a=(K+My) 't
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Dual Representation

Many problems can be expressed using a dual
formulation. Example (linear regression):

1 1 A
J(w) = §WT(I)T(I)W—tT(I)W—I—§tTt—I—§WTW t ¢ RY
L 7 T Lo, [ AT
J(a):§a KKa—a Kt+§t t—|—§a Ka
a=(K-+My) 't

This we can use to make predictions:

f(x*) = wlo(x*) = al g(x*) = k(x*)T (K + AMy) 't
(now x* is unknown and a is given from training)
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Dual Representation
f(x*) =k(x")" (K + Mn) 't
where:

d(x1)" P(x*) o(x1)Tp(x1) ... o(x1)To(xn)
k(x*) = : K = ; ;

p(xn)Tp(x)

Thus, fis expressed only in terms of dot products
between different pairs of ¢(x), or in terms of the
kernel function

k(xi,x;) = ¢(x;)" o(x;)
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Representation using the Kernel

F(x) = k(x*)T (K + Ay) "'t

Now we have to invert a matrix of size N x N,
before It was M x M where M < N, but:

By expressing everything with the kernel
function, we can deal with very high-dimensional
or even infinite-dimensional feature spaces!

Idea: Don’t use features at all but simply define a
similarity function expressed as the kernel!
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Constructing Kernels

The straightforward way to define a kernel function is to
first find a basis (=feature) function ¢(x) and to define:

k(xi,%5) = o(x:)" d(x;)
This means, k£ Is an inner product in some space H, I.€e:
1.Symmetry: k(x;,x;) = (¢(X;), 0(x:)) = (o(x5), d(X5))
2.Linearity: {(a(¢(x:) +2), d(x;)) = a(P(x:), 9(x;)) + a{z, d(x;))
3.Positive definite: (¢(x:), ¢(x;)) > 0, equal if ¢(x;) =0

Can we find conditions for &£ under which there is a
(possibly infinite dimensional) basis function into #,

where £ is an inner product?
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Constructing Kernels

Theorem (Mercer): If k is
1.symmetric, i.e. k(x;,x;) = k(x;,x;) and
2.positive definite, i.e.
k(x1,x1) ... k(x1,xn)
K =

k(xy,x1) ... k(Xn,XnN)

IS positive definite, then there exists a mapping ¢(x)

into a feature space H so that £ can be expressed
as an inner product in H.

This means, we don’t need to find ¢(x) explicitly!
We can directly work with %
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Examples of Valid Kernels

* Polynomial Kernel:
k(xi,x;)=(x;x;+¢c)* ¢>0 deN
* Gaussian Kernel;

k(xi,x;) = exp(—||x; — x;/|%/207)
e Kernel for sets:

k(Ay, Ap) = 21410421
e Matern kernel:

ol—v (m)K (m
N [ g [

) TZHXi—XjH,V>O,l>O
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A Simple Example

Define a kernel function as
k(x,x') = (x'x)? x,x’ € R
This can be written as:

(z12) + xoxh)* = 2727 4 2212 202h, + 252,
($175’327 \/_$1$2)(5‘71 , T 7\/_$1$2)T
= ¢(x)" ¢(x)
It can be shown that this holds in general for

k(xi,x5) = (x; x5)°
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Visualization of the Example

O(x) = (a7, x5, V2w 22) Decision boundary
becomes a hyperplane
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Original decision
boundary is an ellipse
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Application Examples

Kernel Methods can be applied for many different
problems, e.q.:

* Density estimation (unsupervised learning)
® Regression

* Principal Component Analysis (PCA)

e Classification

Most important Kernel Methods are

e Support Vector Machines

e Gaussian Processes
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Kernelization

* Many existing algorithms can be converted into
kernel methods

* This process is called “kernelization™
|dea:

® express similarities of data points in terms of an
inner product (dot product)

* replace all occurrences of that inner product by
the kernel function

This is called the kernel trick
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Example: Nearest Neighbor

e The NN classifier selects the label of the nearest
neighbor in Euclidean distance

T T

Ixi — x;]I° = x; x; + X xj — 2%, X;
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Example: Nearest Neighbor

e The NN classifier selects the label of the nearest
neighbor in Euclidean distance

T T

Ixi — x;]I° = x; x; + X xj — 2%, X;

* \We can now replace the dot products by a valid
Mercer kernel and we obtain:

d(XZ‘, Xj)2 — k(XZ‘, Xz') —+ ]C(Xj, Xj) — Qk(Xi, Xj)
* This is a kernelized nearest-neighbor classifier
* \We do not explicitly compute feature vectors!
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Back to Linear Regression (Rep.)

We had the primal and the dual formulation:

1 1 A
J(w) = §WT(I)T(I)W —t' dw + §tTt — §WTW t ¢ RY

1 1 A
J(a) = §aTKKa —a' Kt + §tTt + §aTKa

with the dual solution:
a = (K —+ )\]N)_lt

This we can use to make predictions:
fx) =wlox*) =a Po(x*) = k(x*) (K + \N) 't

Note: This is (only) the most likely prediction!
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Observations

* \We have found a way to predict function values
of y for new input points x*

* As we used regularized regression, we can
equivalently find the predictive distribution by

marginalizing out the parameters w
Questions:
e Can we find a closed form for that distribution?

e How can we model the uncertainty of our
prediction?

e Can we use that for classification?
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Gaussian Marginals and Conditionals

Assume we have two variables x, and x;, that are
jointly Gaussian distributed, i.e. V(x| u, X)

with
_ Xa _ M L Zaa Za,b
3 (Xb> a <P’b> E—(Zba Ebb)
Then the cond. distribution p(x, | x,) = N (x| tapp: Zapp)
where Halp = Hg T Zabz&al (X6 — Hp)

and Za|b = Yaa — 2a,bz&,lzba
The marginal is
p(Xa) — N(Xa ‘ K Zaa)
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Definition

Definition: A Gaussian process is a collection of
random variables, any finite number of which have
a joint Gaussian distribution.

The number of random variables can be infinite!

This means: a GP is a Gaussian distribution over
functions!

To specify a GP we need:
mean function: m(x) = E[y(x)]
covariance function:

~

k(x1,x2) = Ely(x1) — m(x1)y(x2) — m(x2)]
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e green line: sinusoidal data source
e blue circles: data points with Gaussian noise

e red line: mean function of the Gaussian
process
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How Can We Handle Infinity?

|dea: split the (infinite) number of random

variables into a finite and an infinite subset.

_ (LX) Iy 2f i
= () () (s )

finite part Infinite part

From the marginalization property we get:

plxs) = [ plocs )i = Ny | 1y, 51)

This means we can use finite vectors.

Machine Learning for PD Dr. Rudolph Triebel
Computer Vision Computer Vision Group

TUTI



The Covariance Function

The most used covariance function (kernel) is:

5 1

k(Xp,Xq) = O exp( 972 (xp — Xq)Q) + Ug(qu

signal variance length scale noise variance

It Is known as “squared exponential”, “radial basis
function” or “Gaussian kernel”.

Other possibilities exist, e.g. the exponential

kernel:
k(va Xq) — eXP(_‘9|Xp — XqD

This is used in the “Ornstein-Uhlenbeck” process.
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Sampling from a GP

Just as we can sample from a Gaussian
distribution, we can also generate samples from
a GP. Every sample will then be a function!

Process:

1.Choose a number of input points xj,...,x},

2.Compute the covariance matrix K where

Kij = ]C(X;F,X;f)

3.Generate a random Gaussian vector from
vy ~ N(0, K)

4.Plot the values xj,...,x3%, versus vi,...,y:,
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Sampling from a GP

3 - - - 3
1.5}
O !
—1.5¢
-1 =0.5 0 0.5 1 -1 =0.5 0 0.5
Sqguared exponential kernel Exponential kernel
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Prediction with a Gaussian Process

Most often we are more interested in predicting
new function values for given input data.

We have:
training data xi,..., Xy ¥Y1,...,YN
test input X1,y Xy
And we want test outputs vi.....vx
The joint probabillity is

( ;. ) ~N (0( KXLX) KXo X) ))

and we need to compute p(y* | x*, X,y).
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Prediction with a Gaussian Process

In the case of only one test point x* we have
k(x1,Xy)
k(XN, Xy )
Now we compute the conditional distribution
p(y* | X*7X7 Y) :N(y* | H*az*)
where
e = ki Kt
Yo = k(Xy, Xy) — k>,<TK_1k>k

This defines the predictive distribution.
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Example

-2 0 5

Functions sampled from Functions sampled from the
a Gaussian Process prior predictive distribution

The predictive distribution is itself a Gaussian process.
It represents the posterior after observing the data.
The covariance is low in the vicinity of data points.
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Varying the Hyperparameters

| | =0.3,
1 ° w O’f — 108,
| | o, =0.0005
l p— O'f p— ]_, O'n — O ]_ 3
| £ | =3
* 20 data samples
. L : o| et |
* GP prediction with L o =1.16
different kernel " 2
_ h o
hyper parameters |+~ | =08
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Remember: The Predictive Distribution

We obtain the predictive distribution by integrating
over all possible model parameters (“inference’):

p(t] 26, x) = / p(t] & w)p(w | x, t)dw

Test data Test data likelihood Parameter posterior

This distribution can be computed in closed form,
because both terms on the RHS are Gaussian.

From above we have | p(w | t,x) = NV (w; i, 2)
where p = o 22<I>Tt
and 5 _ 2% 7!

= pu= A\ +d'0) o't

04 MAP solution
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Remember: The Predictive Distribution

Using the linear Gaussian model we get:

p(t| 36, x) = / p(t] @3 w)p(w | x, t)dw

= N(t; p(2)" p, o3 ()

where
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Linear Regression GP

Question:

How does the predictive distribution of the near

regression relate to Gaussian Process
regression?
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Linear Regression GP

Question:

How does the predictive distribution of the near

regression relate to Gaussian Process
regression?

Answer:

Linear regression is a special case of a GP where
the kernel function is

k(X1,X2) = 0§¢(X1)T¢(X2) - 0%51,2
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