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Visualisation

Principle:
e Minimise loss function during training
e Use the found parameters for prediction

Linear
Regression
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Visualisation

Principle:
e Minimise loss function during training
e Use the found parameters for prediction

Linear
Regression

Principle:

« Compute parameter posterior p(w | x, t)
from training data

e During inference, compute the predictive
distribution p(t* | ¥, x, t)

Bayesian Linear
Regression

Advantages:

e Less tendency of overfitting

* Probabilistic interpretation,
uncertainty estimation
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Visualisation

Logistic
Regression

Linear
Regression

Bayesian Linear
Regression

— probabilistic reasoning

from regression to
classification

Machine Learning for PD Dr. Rudolph Triebel
Computer Vision Computer Vision Group



Logistic Regression

To convert the regression problem into a classification
problem, we use a sigmoid function o(), e.g.:

Ly
1
7(a) = 1 + exp(—a)
0- -
0
This can be interpreted as a classification
probability
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Logistic Regression

To convert the regression problem into a classification
problem, we use a sigmoid function o()

We still use our linear prediction model

f(z,w) = w' ¢(x)
but now we use the sigmoid function to model a
foreground class probability

Y; = O(WTqb(XZ-)) i=1,...,N

Thus, we consider a two-class problem (binary
classification).
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Logistic Regression

Again, we formulate a model of the likelihood of
the training data;

(t]x,w) = Hptlwz, t; € {0,1}
But now, we use the Bernoulll distribution:
p(ti | i, w) = y; (1 — y; )t

And again, we aim to maximise the (log)-likelihood

arg max p(t | x, w)
W
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Logistic Regression

We minimise the negative log-likelihood:

E(w) = —logp(ty,... N | X, W)
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Logistic Regression

We minimise the negative log-likelihood:

E(w) = —logp(ty,... N | X, W)

_ Z(ti logy; + (1 —t;)1log(1 — y;))
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Logistic Regression

We minimise the negative log-likelihood:

E(w) = —logp(ty,... N | X, W)

_ Z(ti logy; + (1 —t;)1log(1 — y;))
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Minimisation
Problem: The error equation can not be solved Iin

closed form
N

VE(w) = Z(U(WTﬁb(Xz‘)) —t;)p(x;)

1=1

Instead, we need to apply an iterative approach,
e.g. Newton-Raphson

Wnew = Wold — H_1VE(W)

/

Hessian Matrix

vafniewa W;ld m
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Ilterative Weighted Least Squares

The update rule for the logistic regression
methods is then:

W ew = Wold — (CIDTRCID)_lq)T(y —t)

Where the weighting metric R depends also on
the weights w
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Visualisation

Logistic
Regression

Linear
Regression

Bayesian

Bayesian Linear
»| Logistic Regression

Regression
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Bayesian Logistic Regression

* \We can also use the Bayesian formulation to do
classification

e |dea: formulate a prior distribution over w

e Problem: The likelihood is not Gaussian,
therefore we won’t have a closed form solution
for the posterior

* Therefore: We approximate the posterior using
Laplace approximation
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