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Sampling Methods
Sampling Methods are widely used in Computer 
Science 

• as an approximation of a deterministic algorithm 

• to represent uncertainty without a parametric model 

• to obtain higher computational efficiency with a 
small approximation error 

Sampling Methods are also often 
called Monte Carlo Methods 
Example: Monte-Carlo Integration 
• Sample in the bounding box 

• Compute fraction of inliers 

•Multiply fraction with box size
!2
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Non-Parametric Representation

Probability distributions (e.g. a robot‘s belief) can 
be represeted: 

• Parametrically: e.g. using mean and covariance 
of a Gaussian 

• Non-parametrically: using a set of hypotheses 
(samples) drawn from the distribution 

Advantage of non-parametric representation: 

• No restriction on the type of distribution (e.g. can 
be multi-modal, non- Gaussian, etc.)
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Non-Parametric Representation

The more samples are in an interval, the higher the probability 
of that interval 

But: 

How to draw samples from a function/distribution?

!4
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Sampling from a Distribution
There are several approaches: 

• Probability transformation 
• Uses inverse of the c.d.f h 

• Rejection Sampling 

• Importance Sampling 

• MCMC 
Probability transformation: 

• Sample uniformly in [0,1] 

• Transform using h-1 
But: 

• Requires calculation of h and its inverse

“Cumulative 
distribution 
Function”
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• If                :  
 keep the sample 
otherwise:  
 reject the sample 

Rejection Sampling
1. Simplification: 

• Assume                for all z 

• Sample z uniformly 

• Sample c from 

c

p(z)
c’

z’

p(z’)

OK
z
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Rejection Sampling
2. General case: 

Assume we can evaluate 

• Find proposal distribution q 

• Easy to sample from q 

• Find k with 

• Sample from q   

• Sample uniformly  
from [0,kq(z0)] 

• Reject if  

But: Rejection sampling is inefficient.

(unnormalized)

Rejection 
area
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•Idea:  assign an importance weight w to each 
sample 

•With the importance weights, we can account for the 
“differences between p and q ” 

•p is called target 

•q is called proposal  
(as before)

Importance Sampling

!8
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•Explanation: The prob. of falling  
in an interval A is the area under p 

•This is equal to the expectation of  
the indicator function 

Importance Sampling

A

!9
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•Explanation: The prob. of falling  
in an interval A is the area under p 

•This is equal to the expectation of  
the indicator function 

Approximation with  
samples drawn from q:

Importance Sampling

Requirement:

A

!10
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•Non-parametric implementation of Bayes filter: 
 

•Represents the belief (posterior)                 by a set of 
random state samples. 

•This representation is approximate. 
•Can represent distributions that are not Gaussian. 

•Can model non-linear transformations. 

Basic principle: 

•Set of state hypotheses (“particles”) 

•”Survival-of-the-fittest”

The Particle Filter

!11
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 Algorithm Bayes_filter                : 

1.  if    is a sensor measurement    then 
2.   
3.      for all    do 
4.   
5.   
6.      for all    do 
7.  else if    is an action    then 
8.      for all    do 
9.  return      

Machine Learning for Computer 
Vision

The Bayes Filter Algorithm (Rep.)
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Set of weighted samples: 
 
 

Mathematical Description

The samples represent the probability distribution:

State hypotheses Importance weights

Point mass 
distribution 
(“Dirac” )
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The Particle Filter Algorithm

 Algorithm Particle_filter                   : 
1.    
2.      for              to      do 

3.   
4.   
5.          
6.      for              to       do 

7.  return      

Sample from 
proposal

Compute sample 
weights

Resampling

!14
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Localization with Particle Filters

•Each particle is a potential pose of the robot 

•Proposal distribution is the motion model of the robot 
(prediction step) 

•The observation model is used to compute the 
importance weight (correction step) 

Randomized algorithms are usually called Monte Carlo 
algorithms, therefore we call this:

Monte-Carlo Localization
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A Simple Example

• The initial belief is a uniform distribution (global 
localization). 

• This is represented by an (approximately) uniform 
sampling of initial particles.

!16



PD Dr. Rudolph Triebel 
Computer Vision Group

Machine Learning for 
Computer Vision

Sensor Information

The sensor model                    is used to compute the 
new importance weights:
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Robot Motion

After resampling and applying the motion model  
                          the particles are distributed more 
densely at three locations.
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Again, we set the new importance weights equal to the 
sensor model.

Sensor Information
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Resampling and application of the motion model: 
One location of dense particles is left. 
                             The robot is localized.

Robot Motion

!20
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A Closer Look at the Algorithm…

 Algorithm Particle_filter                   : 
1.    
2.      for              to      do 

3.   
4.   
5.          
6.      for              to       do 

7.  return      

Sample from 
proposal

Compute sample 
weights

Resampling

!21
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Sampling from Proposal

This can be done in the following ways: 
• Adding the motion vector to each particle directly 

(this assumes perfect motion) 
• Sampling from the motion model                           , 

e.g. for a 2D motion with translation velocity v and 
rotation velocity w we have:

Position

Orientation

!22
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Start

Motion Model Sampling (Example)
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Computation of the sample weights: 
• Proposal distribution: 

(we sample from that using the motion model) 
• Target distribution (new belief): 

(we can not directly sample from that → importance 
sampling) 
• Computation of importance weights:

Computation of Importance Weights
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Proximity Sensor Models

• How can we obtain the sensor model                    ? 
• Sensor Calibration:

Laser sensor Sonar sensor

!25
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• Given: Set      of weighted samples. 
• Wanted : Random sample, where the probability of 

drawing xi is equal to wi. 

• Typically done M times with replacement to generate 
new sample set     .

Resampling

     for              to       do

!26
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w2

w3

w1wn

Wn-1

Resampling

w2

w3

w1wn

Wn-1

•Standard n-times sampling  
results in high variance 

•This requires more particles 
•O(nlog n) complexity

• Instead: low variance sampling  
only samples once 

• Linear time complexity 

• Easy to implement

!27
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Initial Distribution
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After Ten Ultrasound Scans
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After 65 Ultrasound Scans

!30



PD Dr. Rudolph Triebel 
Computer Vision Group

Machine Learning for 
Computer Vision

Estimated Path
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Kidnapped Robot Problem

The approach described so far is able to  

• track the pose of a mobile robot and to 

• globally localize the robot. 

• How can we deal with localization errors (i.e., 
the kidnapped robot problem)? 

Idea: Introduce uniform samples at every 
resampling step 

• This adds new hypotheses

!32
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Summary

• There are mainly 4 different types of sampling 
methods: Transformation method, rejections 
sampling, importance sampling and MCMC 

• Transformation only rarely applicable 

• Rejection sampling is often very inefficient 

• Importance sampling is used in the particle filter 
which can be used for robot localization 

• An efficient implementation of the resampling 
step is the low variance sampling

!33
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Markov Chain Monte Carlo

• In high-dimensional spaces, rejection sampling 
and importance sampling are very inefficient 

• An alternative is Markov Chain Monte Carlo 
(MCMC) 

• It keeps a record of the current state and the 
proposal depends on that state 

• Most common algorithms are the Metropolis-
Hastings algorithm and Gibbs Sampling
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Markov Chains Revisited

A Markov Chain is a distribution over discrete-
state random variables                 so that 

The graphical model of a Markov chain is this:  
  

We will denote                  as a row vector   
A Markov chain can also be visualized as a state 
transition diagram.

!36
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The State Transition Diagram

A33 A33

A11 A11k=1

k=2

k=3

time

t-2 t-1 t

!37

st
at
es



PD Dr. Rudolph Triebel 
Computer Vision Group

Machine Learning for 
Computer Vision

Some Notions

• The Markov chain is said to be homogeneous if 
the transitions probabilities are all the same at 
every time step t (here we only consider 
homogeneous Markov chains) 

• The transition matrix is row-stochastic, i.e. all 
entries are between 0 and 1 and all rows sum 
up to 1 

• Observation: the probabilities of reaching the 
states can be computed using a vector-matrix 
multiplication

!38
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The Stationary Distribution

The probability to reach state k is 
Or, in matrix notation: 
We say that      is stationary if  

Questions: 
•How can we know that a stationary distributions 
exists? 

•And if it exists, how do we know that it is 
unique?

!39
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The Stationary Distribution (Existence)

To find a stationary distribution we need to  
solve the eigenvector problem               
The stationary distribution is then            where   
is the eigenvector for which the eigenvalue is 1. 
This eigenvector needs to be normalized so that 
it is a valid distribution.  
Theorem: Every row-stochastic matrix has such 
an eigen vector, but this vector may not be 
unique. 
Proof based on Perron-Frobenius. 

!40
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Stationary Distribution (Uniqueness)

• A Markov chain can have many stationary 
distributions 

• Sufficient for a unique stationary distribution: 
we can reach every state from any other state in 
finite steps at non-zero probability, i.e. the chain 
is ergodic (without proof) 

• This is equivalent to the property that the 
transition matrix is irreducible:

!41
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Main Idea of MCMC

• So far, we specified the transition probabilities 
and analysed the resulting distribution 

• This was used, e.g. in HMMs 
Now:  
• We want to sample from an arbitrary distribution  
• To do that, we design the transition probabilities 

so that the resulting stationary distribution is our 
desired (target) distribution!
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Detailed Balance

!43

Definition: A transition distribution    satisfies the 
property of detailed balance if 
The chain is then said to be reversible.

⇡t

⇡iAij = ⇡jAji

⇡1

⇡3 ⇡1A13 + · · ·

⇡3A31 + · · ·

A31

t-1 t

A13
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Making a Distribution Stationary

Theorem: If a Markov chain with transition matrix 
A is irreducible and satisfies detailed balance wrt. 
the distribution   , then    is a stationary 
distribution of the chain. 
Proof:  

it follows              . 

This is a sufficient, but not necessary condition.

!44
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Sampling with a Markov Chain 

The idea of MCMC is to sample state transitions 
based on a proposal distribution q. 
The most widely used algorithm is the 
Metropolis-Hastings (MH) algorithm. 
In MH, the decision whether to stay in a given 
state is based on a given probability. 
If the proposal distribution is            , then we 
stay in state     with probability   

!45

q(x0 | x)

x0

min

✓
1,

p̃(x0)q(x | x0)

p̃(x)q(x0 | x)

◆

Unnormalized 
target distribution

A(x,x0) :=
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>



PD Dr. Rudolph Triebel 
Computer Vision Group

Machine Learning for 
Computer Vision

The Metropolis-Hastings Algorithm

• Initialize 
• for 

•define 
•sample 

•compute acceptance probability 

•compute  
•sample 
•set new sample to

!46

x0

s = 0, 1, 2, . . .

x = xs

x0 ⇠ q(x0 | x)

↵ =
p̃(x0)q(x | x0)

p̃(x)q(x0 | x)
r = min(1,↵)

u ⇠ U(0, 1)

xs+1 =

(
x0 if u < r

xs if u � r

Aim: create samples from  
(unnormalized) distribution   ̃p
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Why Does This Work?

We have to prove that the transition probability of 
the MH algorithm satisfies detailed balance wrt 
the target distribution. 
Theorem: If                   is the transition 
probability of the MH algorithm, then   

Proof:

!47
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Why Does This Work?

We have to prove that the transition probability of 
the MH algorithm satisfies detailed balance wrt 
the target distribution. 
Theorem: If                   is the transition 
probability of the MH algorithm, then   

Note: All formulations are valid for discrete 
and for continuous variables!

!48

pMH(x0 | x)

p(x)pMH(x0 | x) = p(x0)pMH(x | x0)



PD Dr. Rudolph Triebel 
Computer Vision Group

Machine Learning for 
Computer Vision

Choosing the Proposal

• A proposal distribution is valid if it gives a non-
zero probability of moving to the states that 
have a non-zero probability in the target. 

• A good proposal is the Gaussian, because it 
has a non-zero probability for all states. 

• However: the variance of the Gaussian is 
important! 
•with low variance, the sampler does not explore 

sufficiently, e.g. it is fixed to a particular mode 
•with too high variance, the proposal is rejected too 

often, the samples are a bad approximation
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Example

Target is a mixture of 2 
1D Gaussians. 
Proposal is a Gaussian 
with different variances.

!50
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Summary

• Markov Chain Monte Carlo is a family of sampling 
algorithms that can sample from arbitrary 
distributions by moving in state space 

• Most used methods are the Metropolis-Hastings 
(MH) and  the Gibbs sampling method 

• MH uses a proposal distribution and accepts a 
proposed state randomly 

• Gibbs sampling does not use a proposal 
distribution, but samples from the full conditionals
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