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Motivation

•A major task in probabilistic reasoning is to 
evaluate the posterior distribution              of a 
set of latent variables Z given data X (inference) 

However: This is often not tractable, e.g. 
because the latent space is high-dimensional 
•Two different solutions are possible: sampling 
methods and variational methods. 

•In variational optimization, we seek a tractable 
distribution q that approximates the posterior. 

•Optimization is done using functionals.
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p(Z | X)
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p(Z | X)

Careful: Different notation!  
In Bishop (and in the following slides) 

 Z are hidden states  
and X are observations
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Variational Inference

In general, variational methods are concerned 
with mappings that take functions as input. 

Example: the entropy of a distribution p 

Variational optimization aims at finding functions 
that minimize (or maximize) a given functional. 
This is mainly used to find approximations to a 
given function by choosing from a family. 
The aim is mostly tractability and simplification.
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H[p] =

Z
p(x) log p(x)dx “Functional”
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The KL-Divergence

Aim: define a functional that resembles a 
“difference” between distributions p and q 
Idea: use the average additional amount of 
information: 

This is known as the Kullback-Leibler divergence 
It has the properties: 

This follows from Jensen’s inequality
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�
Z

p(x) log q(x)dx�
✓
�
Z

p(x) log p(x)dx

◆
= �

Z
p(x) log

q(x)

p(x)
dx

KL(qkp) 6= KL(pkq)

= KL(pkq)

KL(pkq) � 0 KL(pkq) = 0 , p ⌘ q
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Example: A Variational Formulation of EM

Assume for a moment that we observe X and the 
binary latent variables Z. The likelihood is then:  
 
 
 
                               
 
 
 
 

!6

p(X,Z | ⇡,µ,⌃) =
NY

n=1

p(zn | ⇡)p(xn | zn,µ,⌃)
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Remember: 

znk 2 {0, 1},
KX

k=1

znk = 1

Example: A Variational Formulation of EM

Assume for a moment that we observe X and the 
binary latent variables Z. The likelihood is then:  
 
 
 
where                                and 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p(X,Z | ⇡,µ,⌃) =
NY

n=1

p(zn | ⇡)p(xn | zn,µ,⌃)

p(zn | ⇡) =
KY

k=1

⇡znk
k

p(xn | zn,µ,⌃) =
KY

k=1

N (xn | µk,⌃k)
znk
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Example: A Variational Formulation of EM

Assume for a moment that we observe X and the 
binary latent variables Z. The likelihood is then:  
 
 
 
where                                and 
 
 
 
 
which leads to the log-formulation:
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p(X,Z | ⇡,µ,⌃) =
NY

n=1

p(zn | ⇡)p(xn | zn,µ,⌃)

p(zn | ⇡) =
KY

k=1

⇡znk
k

p(xn | zn,µ,⌃) =
KY

k=1

N (xn | µk,⌃k)
znk

log p(X,Z | ⇡,µ,⌃) =
NX

n=1

KX

k=1

znk(log ⇡k + logN (xn | µk,⌃k))
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The Complete-Data Log-Likelihood

• This is called the complete-data log-likelihood 
• Advantage: solving for the parameters  

is much simpler, as the log is inside the sum! 
• We could switch the sums and then for every 

mixture component k only look at the points that 
are associated with that component. 

• This leads to simple closed-form solutions for the 
parameters 

• However: the latent variables Z are not observed!
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log p(X,Z | ⇡,µ,⌃) =
NX

n=1

KX

k=1

znk(log ⇡k + logN (xn | µk,⌃k))

(⇡k,µk,⌃k)
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The Main Idea of EM

Instead of maximizing the joint log-likelihood, we 
maximize its expectation under the latent variable 
distribution: 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EZ [log p(X,Z | ⇡,µ,⌃)] =
NX

n=1

KX

k=1

EZ [znk](log ⇡k + logN (xn | µk,⌃k))
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The Main Idea of EM

Instead of maximizing the joint log-likelihood, we 
maximize its expectation under the latent variable 
distribution: 
 
 
 
where the latent variable distribution per point is:
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EZ [log p(X,Z | ⇡,µ,⌃)] =
NX

n=1

KX

k=1

EZ [znk](log ⇡k + logN (xn | µk,⌃k))

p(zn | xn,✓) =
p(xn | zn,✓)p(zn | ✓)

p(xn | ✓) ✓ = (⇡,µ,⌃)

=

QK
l=1(⇡lN (xn | µl,⌃l))znl

PK
j=1 ⇡jN (xn | µj ,⌃j)
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The Main Idea of EM

The expected value of the latent variables is: 

plugging in we obtain: 

We compute this iteratively: 
1. Initialize 
2. Compute 
3. Find parameters                        that maximize this 

4. Increase i;  if not converged, goto 2. 
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E[znk] = �(znk)

EZ [log p(X,Z | ⇡,µ,⌃)] =
NX

n=1

KX

k=1

�(znk)(log ⇡k + logN (xn | µk,⌃k))

E[znk] = �(znk)

i = 0, (⇡i
k,µ

i
k,⌃

i
k)

(⇡i+1
k ,µi+1

k ,⌃i+1
k )

Remember: 

�(znk) = p(znk = 1 | xn)
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Why Does This Work?

• We have seen that EM maximizes the expected 
complete-data log-likelihood, but: 

• Actually, we need to maximize the log-marginal 

• It turns out that the log-marginal is maximized 
implicitly!

!13

log p(X | ✓) = log
X

Z

p(X,Z | ✓)
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A Variational Formulation of EM

• We have seen that EM maximizes the expected 
complete-data log-likelihood, but: 

• Actually, we need to maximize the log-marginal 

• It turns out that the log-marginal is maximized 
implicitly!
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log p(X | ✓) = log
X

Z

p(X,Z | ✓)

log p(X | ✓) = L(q,✓) + KL(qkp)

L(q,✓) =
X

Z

q(Z) log
p(X,Z | ✓)

q(Z)
KL(qkp) = �

X

Z

q(Z) log
p(Z | X,✓)

q(Z)
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A Variational Formulation of EM

• Thus: The Log-likelihood consists of two functionals 
 
 
where the first is (proportional to) an expected 
complete-data log-likelihood under a distribution q 
 
 
and the second is the KL-divergence between p 
and q:
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log p(X | ✓) = L(q,✓) + KL(qkp)

L(q,✓) =
X

Z

q(Z) log
p(X,Z | ✓)

q(Z)

KL(qkp) = �
X

Z

q(Z) log
p(Z | X,✓)

q(Z)
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Visualization

• The KL-divergence is positive or 0 
• Thus, the log-likelihood is at least as large as L or: 
•L is a lower bound (ELBO) of the log-likelihood 

(evidence):

!16

log p(X | ✓) � L(q,✓)
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What Happens in the E-Step?

• The log-likelihood is independent of q 

• Thus: L is maximized iff KL divergence is minimal (=0) 

• This is the case iff 

!17

q(Z) = p(Z | X,✓)
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What Happens in the M-Step?

• In the M-step we keep q fixed and find new  

• We maximize the first term, the second is indep.  
• This implicitly makes KL non-zero 
• The log-likelihood is maximized even more! 
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L(q,✓) =
X

Z

p(Z | X,✓old) log p(X,Z | ✓)�
X

Z

q(Z) log q(Z)

✓
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Visualization in Parameter-Space

• In the E-step we compute the concave lower 
bound for given old parameters        (blue curve) 

• In the M-step, we maximize this lower bound and 
obtain new parameters  

• This is repeated (green curve) until convergence

!19

✓old

✓new
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VI in General

Analogue to the discussion about EM we have: 

Again, maximizing the lower bound is equivalent 
to minimizing the KL-divergence. 
The maximum is reached when the KL-divergence 
vanishes, which is the case for                        . 
However: Often the true posterior is intractable 
and we restrict q to a tractable family of dist.

!20

log p(X) = L(q) + KL(qkp)

L(q) =
Z

q(Z) log
p(X,Z)

q(Z)
dZ KL(q) = �

Z
q(Z) log

p(Z | X)

q(Z)
dZ

q(Z) = p(Z | X)
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Generalizing the Idea

• In EM, we were looking for an optimal 
distribution q in terms of KL-divergence 

• Luckily, we could compute q in closed form 
• In general, this is not the case, but we can use 

an approximation instead:  

• Idea: make a simplifying assumption on q so 
that a good approximation can be found 

• For example: Consider the case where q can be 
expressed as a product of simpler terms

!21

q(Z) ⇡ p(Z | X)
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Factorized Distributions

We can split up q by partitioning Z into disjoint 
sets and assuming that q factorizes over the sets: 

This is the only assumption about q! 
Idea: Optimize        by optimizing wrt. each of the 
factors of q in turn. Setting                  we have  

!22

q(Z) =
MY

i=1

qi(Zi)

L(q)

L(q) =
Z Y

i

qi

 
log p(X,Z)�

X

i

log qi

!
dZ

Shorthand: 

qi  qi(Zi)

qi  qi(Zi)
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Mean Field Theory
This results in: 

where 

Thus, we have  
I.e., maximizing the lower bound is equivalent to 
minimizing the KL-divergence of a single factor 
and a distribution that can be expressed in terms 
of an expectation:

!23

L(q) =
Z

qj log p̃(X,Zj)dZj �
Z

qj log qjdZj + const

L(q) = �KL(qjkp̃(X,Zj))

log p̃(X,Zj) = Ei 6=j [log p(X,Z)] + const

Ei 6=j [log p(X,Z)] =

Z
log p(X,Z)

Y

i 6=j

qidZi

+const

� j

� j

� j
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Mean Field Theory
Therefore, the optimal solution in general is 

In words: the log of the optimal solution for a  
factor    is obtained by taking the expectation with 
respect to all other factors of the log-joint proba-
bility of all observed and unobserved variables  
The constant term is the normalizer and can be 
computed by taking the exponential and 
marginalizing over  
This is not always necessary.

!24

log q⇤j (Zj) = Ei 6=j [log p(X,Z)] + const

Zj

qj

� j



PD Dr. Rudolph Triebel 
Computer Vision Group

Machine Learning for 
Computer Vision

Variational Mixture of Gaussians

• Again, we have observed data 
and latent variables 

• Furthermore we have 

• We introduce priors for all parameters, e.g.

!25

X = {x1, . . . ,xN}
Z = {z1, . . . , zN}

p(Z | ⇡) =
NY

n=1

KY

k=1

⇡znk
k p(X | Z,µ,⇤) =

NY

n=1

KY

k=1

N (xn | µk,⇤
�1)znk

p(⇡) = Dir(⇡ | ↵0)

p(µ,⇤) =
KY

k=1

N (µk | m0, (�0⇤k)
�1)W(⇤k | W0, ⌫0)
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Variational Mixture of Gaussians

• The joint probability is then: 

• We consider a distribution q so that 

• Using our general result: 

• Plugging in:

!26

p(X,Z,⇡,µ,⇤) = p(X | Z,µ,⇤)p(Z | ⇡)p(⇡)p(µ | ⇤)p(⇤)

q(Z,⇡,µ,⇤) = q(Z)q(⇡,µ,⇤)

log q⇤(Z) = E⇡,µ,⇤[log p(X,Z,⇡,µ,⇤)] + const

log q⇤(Z) = E⇡[log p(Z | ⇡)] + Eµ,⇤[log p(X | Z,µ,⇤)] + const
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Variational Mixture of Gaussians

• The joint probability is then: 

• We consider a distribution q so that 

• Using our general result: 

• Plugging in: 

• From this we can show that: 
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p(X,Z,⇡,µ,⇤) = p(X | Z,µ,⇤)p(Z | ⇡)p(⇡)p(µ | ⇤)p(⇤)

q(Z,⇡,µ,⇤) = q(Z)q(⇡,µ,⇤)

log q⇤(Z) = E⇡,µ,⇤[log p(X,Z,⇡,µ,⇤)] + const

log q⇤(Z) = E⇡[log p(Z | ⇡)] + Eµ,⇤[log p(X | Z,µ,⇤)] + const

q⇤(Z) =
NY

n=1

KY

k=1

rznk
nk
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Variational Mixture of Gaussians

This means: the optimal solution to the factor 

has the same functional form as the prior of Z.  
It turns out, this is true for all factors. 

However: the factors q depend on moments 
computed with respect to the other variables, i.e. 
the computation has to be done iteratively. 
This results again in an EM-style algorithm, with 
the difference, that here we use conjugate priors 
for all parameters. This reduces overfitting.

!28

q(Z)
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Example: Clustering
• 6 Gaussians 
• After convergence, 

only two compo-
nents left 

• Complexity is tra-
ded off with data 
fitting 

• This behaviour 
depends on a 
parameter of the 
Dirichlet prior

!29


