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Exponential Families

Definition: A probability distribution p over x is a
member of the exponential family if it can be
expressed as

p(x | p) = h(x)g(n) exp(n’ u(x))

where » are the natural parameters and
-1

g(n) = ( f h(x) exp(n’ u(x))dx

IS the normalizer.
h and u are functions of x.
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Exponential Families

Example: Bernoulli-Distribution with parameter u

pCx | ) = (1 =)'
=exp(xIlnu + (1 —x)In(1 — u))
= exp(xIny + In(1 — ) — xIn(1 — p))

= —wexp(xIny — xIn(1 — w))

= (1 —,u)exp(xln( £ ))
1 —p

Thus, we can say

77:1n( a ) ; = : = 1 : = g(n)
1 —u — 'u_1+exp(—n) H - &UI
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Exponential Families

Example: Normal-Distribution with parameters u
and o

l(x—u)z)

p(x|u o) = N UzeXp( > o

T
(e ]
n_(()'z’ 20‘2)

u(x) = (x, x*)"

1
h(x) = ——
(x) r
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MLE for Exponential Families

From: g(n) f h(X) eXp(l]Tll(X))dX =1
we get:

V() f h(x) exp(r u(x))dx + g() f h(%) exp(y u(x)u(x)dx = 0

Ve(n)
g(1n)

= g(n) f h(X) eXP(I]Tll(X))ll(X)dX = E[u(x)]

which means that —Ving(n) = E[u(x)]
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MLE for Exponential Families

From: g(n) f h(X) eXp(l]Tll(X))dX =1
we get:

V() f h(x) exp(r u(x))dx + g() f h(%) exp(y u(x)u(x)dx = 0

Ve(n)
g(1n)

= g(n) f h(X) eXp(l]Tll(X))ll(X)dX = E[u(x)]

which means that —Ving(n) = E[u(x)]

u(x) is called the sufficient statistics of p.
E[u(x)] IS the vector of moments.
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Expectation Propagation

In mean-field we minimized KL(q||p). But: we can
also minimize KL(p|lg). Assume ¢ Is from the

natural parameters

exponential family:
e

— normalizer

o) [ ) exp(n™u(x))dx = 1
Then we have:

KL(p[q) = — /p(x) log X¥)g(1) exp(n_ u(x))

p(x)

X
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Expectation Propagation

This results in KL(p|lq) = —log g(n) — n' E,[u(x)] + const
We can minimize this with respect to n

—Vlogg(n) = Epu(x))
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Expectation Propagation

This results in KL(p|lq) = —log g(n) — n” E,[u(x)] + const
We can minimize this with respect to n

—Vlogg(n) = E,[u(x)]
which is equivalent to
Lqlu(x)] = Ep[u(x),
Thus: the KL-divergence is minimal if the exp.
sufficient statistics are the same between p and ¢!

For example, if g is Gaussian: u(z) = ( 52 >

Then, mean and covariance of g must be the
same as for p (moment matching)
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Expectation Propagation

Assume we have a factorization p(D, 6) H f:(0
and we are interested in the posterlor. =

p(6 | D) = Hfze

M

we use an approximation ¢(6) = %H 7:(0)
=1

)
1

. S R 1 = -
Aim: minimize KL (M}Iﬁ(e)‘zﬂﬁ(e )

Idea: optimize each of the approximating factors
In turn, assume exponential family
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The EP Algorithm

e (Given: a joint distribution over data and variables

p(D, 9) — H fz(g)

®* Goal: approximate the posterior p(6 | D) with ¢
e Initialize all approximating factors f;(6)
* |nitialize the posterior approximation ¢(8) « H £:(0)
e Do until convergence: Z'
e choose a factor f;(6)

* remove the factor from ¢ by division: ¢V (8) = =
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The EP Algorithm
that minimizes

KL (fj(H)g\j(H)

new

efind ¢

qneW(9)>
using moment matching, including the zeroth order

moment: |
Z = [ 49(6)1,(6)d6

e evaluate the new factor

_ qnew(g)

f](g) — Zj C]\J(H)

e After convergence, we have p(D) ~ / H fi(6)de
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Properties of EP

* There is no guarantee that the iterations will
converge

e This Is Iin contrast to variational Bayes, where
iterations do not decrease the lower bound

* EP minimizes K L(p|/q) where variational Bayes
minimizes K L(q||p)

N =)
5

K L(q|[p)
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Example

-2 —1 O 1 2 % 4
yellow: original distribution

red: Laplace approximation
green: global variation

blue: expectation-propagation
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Remember: GP Classification

p(y | £)p(f | X)
p(y | X)

p(f| X,y) =

e The likelihood term is not a Gaussian!

* This means, we can not compute the
posterior in closed form.

e There are several different solutions in the
literature, e.q.:

o[ aplace approximation
s Expectation Propagation
e\ariational methods
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The Clutter Problem

* Aim: fit a multivariate Gaussian into data in the
presence of background clutter (also Gaussian)

p(x|0)=(1—-wN(x|0,I)+wN(x|0,al)
* The prior is Gaussian: p(6) = N'(0 ] 0,b])
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The Clutter Problem

The joint distribution for D (X1,...,xn) IS

H (x5, | O)

this is a mixture of 2% Gaussians! This is

intractable for large N. Instead, we approximate

it using a spherical Gaussian:
N

1(6) = N® | m,oD) = fo(®) ][ 7.

the factors are (unnormalized) Gaussmns.
fO(H) :p(H) fn(g) — SnN(g | mnavnl)
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EP for the Clutter Problem

* First, we initialize f,(0)=1,i.e. ¢(8) = p(0)
e [terate;

* Remove the current estimate of f,,(0) from ¢ by
division of Gaussians:

. (0) = 1(6)
1O =7 )
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EP for the Clutter Problem

* First, we initialize f,(0)=1,i.e. ¢(8) = p(0)
e [terate;

* Remove the current estimate of f,,(0) from ¢ by
division of Gaussians:

. (0) = 1(6)
10 =7 )

e Compute the normalization constant:
Lin = /q—n(e)fn(g)de

e Compute mean and variance of ¢"“V ~ ¢q_,(0)f,.(0)
 Update the factor 7,) = 2,49

q_n(0) =N(O | m_,,,v_,1)

Q—n(g)
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A 1D Example

A /)

-5 0 5 0 10 = 0 > 0 10

* blue: true factor f,,(0)
* red: approximate factor ¢, (0)
® green: cavity distribution ¢_,,(6)

The form of ¢_,(8) controls the range over which
7.(0) will be a good approximation of f,(6)
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Summary

e Variational Inference uses approximation of
functions so that the KL-divergence is minimal

* |n mean-field theory, factors are optimized
sequentially by taking the expectation over all
other variables

e Expectation propagation minimizes the
reverse KL-divergence of a single factor by
moment matching; factors are in the exp. family
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