

Variational Inference - Expectation Propagation

Exponential Families

Definition: A probability distribution p over x is a member of the **exponential family** if it can be expressed as

$$p(\mathbf{x} \mid \boldsymbol{\eta}) = h(\mathbf{x})g(\boldsymbol{\eta}) \exp(\boldsymbol{\eta}^T \mathbf{u}(\mathbf{x}))$$

where η are the natural parameters and

$$g(\boldsymbol{\eta}) = \left(\int h(\mathbf{x}) \exp(\boldsymbol{\eta}^T \mathbf{u}(\mathbf{x})) d\mathbf{x}\right)^{-1}$$

is the normalizer.

h and u are functions of x.

Exponential Families

Example: Bernoulli-Distribution with parameter μ

$$p(x \mid \mu) = \mu^{x} (1 - \mu)^{1 - x}$$

$$= \exp(x \ln \mu + (1 - x) \ln(1 - \mu))$$

$$= \exp(x \ln \mu + \ln(1 - \mu) - x \ln(1 - \mu))$$

$$= (1 - \mu) \exp(x \ln \mu - x \ln(1 - \mu))$$

$$= (1 - \mu) \exp\left(x \ln \left(\frac{\mu}{1 - \mu}\right)\right)$$

Thus, we can say

$$\eta = \ln\left(\frac{\mu}{1-\mu}\right) \Rightarrow \quad \mu = \frac{1}{1+\exp(-\eta)} \Rightarrow 1-\mu = \frac{1}{1+\exp(\eta)} = g(\eta)$$

Exponential Families

Example: Normal-Distribution with parameters μ and σ

$$p(x \mid \mu, \sigma) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{1}{2} \frac{(x - \mu)^2}{\sigma^2}\right)$$
$$\boldsymbol{\eta} = \left(\frac{\mu}{\sigma^2}, -\frac{1}{2\sigma^2}\right)^T$$

$$h(x) = \frac{1}{\sqrt{2\pi}} \qquad \mathbf{u}(x) = (x, x^2)^T$$

MLE for Exponential Families

From: $g(\eta) \int h(\mathbf{x}) \exp(\eta^T \mathbf{u}(\mathbf{x})) d\mathbf{x} = 1$

we get:

$$\nabla g(\boldsymbol{\eta}) \int h(\mathbf{x}) \exp(\boldsymbol{\eta}^T \mathbf{u}(\mathbf{x})) d\mathbf{x} + g(\boldsymbol{\eta}) \int h(\mathbf{x}) \exp(\boldsymbol{\eta}^T \mathbf{u}(\mathbf{x})) \mathbf{u}(\mathbf{x}) d\mathbf{x} = 0$$

$$\Rightarrow -\frac{\nabla g(\boldsymbol{\eta})}{g(\boldsymbol{\eta})} = g(\boldsymbol{\eta}) \int h(\mathbf{x}) \exp(\boldsymbol{\eta}^T \mathbf{u}(\mathbf{x})) \mathbf{u}(\mathbf{x}) d\mathbf{x} = \mathbb{E}[\mathbf{u}(\mathbf{x})]$$

which means that $-\nabla \ln g(\eta) = \mathbb{E}[\mathbf{u}(\mathbf{x})]$

MLE for Exponential Families

From: $g(\eta) \int h(\mathbf{x}) \exp(\eta^T \mathbf{u}(\mathbf{x})) d\mathbf{x} = 1$

we get:

$$\nabla g(\boldsymbol{\eta}) \int h(\mathbf{x}) \exp(\boldsymbol{\eta}^T \mathbf{u}(\mathbf{x})) d\mathbf{x} + g(\boldsymbol{\eta}) \int h(\mathbf{x}) \exp(\boldsymbol{\eta}^T \mathbf{u}(\mathbf{x})) \mathbf{u}(\mathbf{x}) d\mathbf{x} = 0$$

$$\Rightarrow -\frac{\nabla g(\boldsymbol{\eta})}{g(\boldsymbol{\eta})} = g(\boldsymbol{\eta}) \int h(\mathbf{x}) \exp(\boldsymbol{\eta}^T \mathbf{u}(\mathbf{x})) \mathbf{u}(\mathbf{x}) d\mathbf{x} = \mathbb{E}[\mathbf{u}(\mathbf{x})]$$

which means that $-\nabla \ln g(\eta) = \mathbb{E}[\mathbf{u}(\mathbf{x})]$

 $\mathbf{u}(\mathbf{x})$ is called the sufficient statistics of p.

 $\mathbb{E}[\mathbf{u}(\mathbf{x})]$ is the vector of moments.

In mean-field we minimized KL(q||p). But: we can also minimize KL(p||q). Assume q is from the exponential family:

$$q(\mathbf{x}) = h(\mathbf{x})g(\mathbf{\eta}) \exp(\mathbf{\eta}^T \mathbf{u}(\mathbf{x}))$$
 normalizer

$$g(\boldsymbol{\eta}) \int h(\mathbf{x}) \exp(\boldsymbol{\eta}^T \mathbf{u}(\mathbf{x})) d\mathbf{x} = 1$$

Then we have:

$$KL(p||q) = -\int p(\mathbf{x}) \log \frac{h(\mathbf{x})g(\boldsymbol{\eta}) \exp(\boldsymbol{\eta}^T \mathbf{u}(\mathbf{x}))}{p(\mathbf{x})} d\mathbf{x}$$

This results in $\mathrm{KL}(p\|q) = -\log g(\eta) - \eta^T \mathbb{E}_p[\mathbf{u}(\mathbf{x})] + \mathrm{const}$ We can minimize this with respect to η

$$-\nabla \log g(\boldsymbol{\eta}) = \mathbb{E}_p[\mathbf{u}(\mathbf{x})]$$

This results in $\mathrm{KL}(p\|q) = -\log g(\eta) - \eta^T \mathbb{E}_p[\mathbf{u}(\mathbf{x})] + \mathrm{const}$ We can minimize this with respect to η

$$-\nabla \log g(\boldsymbol{\eta}) = \mathbb{E}_p[\mathbf{u}(\mathbf{x})]$$

which is equivalent to

$$\mathbb{E}_q[\mathbf{u}(\mathbf{x})] = \mathbb{E}_p[\mathbf{u}(\mathbf{x})]$$

Thus: the KL-divergence is minimal if the exp.

sufficient statistics are the same between p and q!

For example, if q is Gaussian: $\mathbf{u}(x) = \begin{pmatrix} x \\ x^2 \end{pmatrix}$

Then, mean and covariance of q must be the same as for p (moment matching)

Assume we have a factorization $p(\mathcal{D}, \theta) = \prod_{i=1}^{n} f_i(\theta)$ and we are interested in the posterior:

$$p(\boldsymbol{\theta} \mid \mathcal{D}) = \frac{1}{p(\mathcal{D})} \prod_{i=1}^{M} f_i(\boldsymbol{\theta})$$

we use an approximation $q(\theta) = \frac{1}{Z} \prod_{i=1}^{M} \tilde{f}_i(\theta)$

Aim: minimize
$$\mathrm{KL}\left(\frac{1}{p(\mathcal{D})}\prod_{i=1}^{M}f_{i}(\boldsymbol{\theta})\Big\|\frac{1}{Z}\prod_{i=1}^{M}\tilde{f}_{i}(\boldsymbol{\theta})\right)$$

Idea: optimize each of the approximating factors in turn, assume exponential family

M

The EP Algorithm

Given: a joint distribution over data and variables

$$p(\mathcal{D}, \boldsymbol{\theta}) = \prod_{i=1}^{N} f_i(\boldsymbol{\theta})$$

- Goal: approximate the posterior $p(\theta \mid D)$ with q
- Initialize all approximating factors $\tilde{f}_i(\theta)$
- Initialize the posterior approximation $q(\theta) \propto \prod_i \tilde{f}_i(\theta)$
- Do until convergence:
 - ullet choose a factor $ilde{f}_j(oldsymbol{ heta})$
 - remove the factor from q by division: $q^{\setminus j}(\theta) = \frac{q(\theta)}{\tilde{f}_i(\theta)}$

The EP Algorithm

• find q^{new} that minimizes

$$KL\left(\frac{f_j(\theta)q^{\setminus j}(\boldsymbol{\theta})}{Z_j}\Big|q^{\text{new}}(\boldsymbol{\theta})\right)$$

using moment matching, including the zeroth order moment:

$$Z_j = \int q^{\setminus j}(\boldsymbol{\theta}) f_j(\boldsymbol{\theta}) d\boldsymbol{\theta}$$

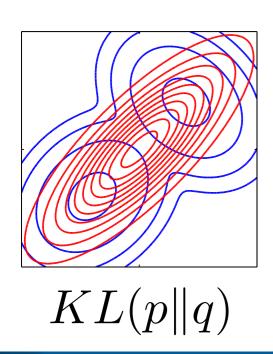
evaluate the new factor

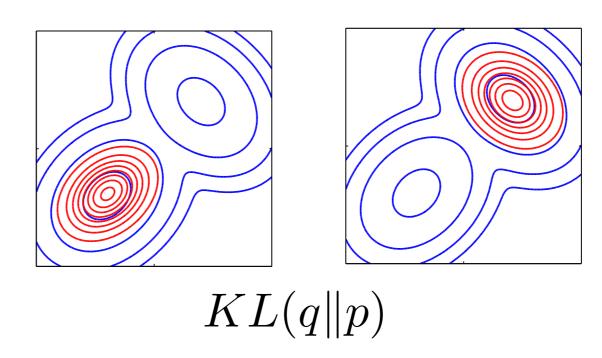
$$\tilde{f}_j(\boldsymbol{\theta}) = Z_j \frac{q^{\text{new}}(\boldsymbol{\theta})}{q^{\setminus j}(\boldsymbol{\theta})}$$

• After convergence, we have $p(\mathcal{D}) pprox \int \prod_i \tilde{f}_j(m{ heta}) dm{ heta}$

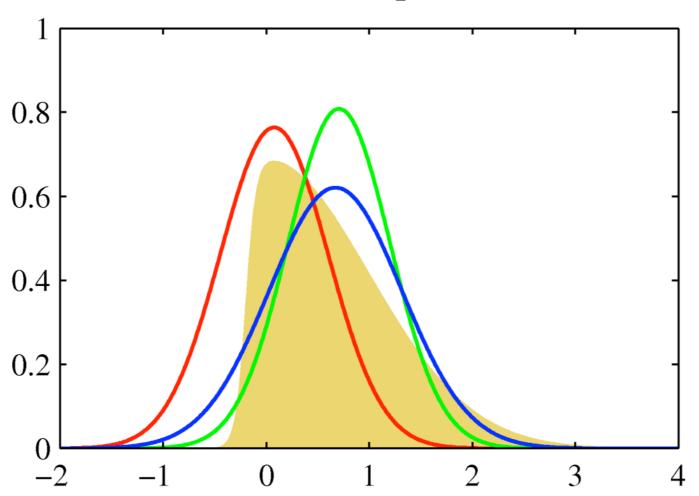
Properties of EP

- There is no guarantee that the iterations will converge
- This is in contrast to variational Bayes, where iterations do not decrease the lower bound
- EP minimizes KL(p||q) where variational Bayes minimizes KL(q||p)





Example



yellow: original distribution

red: Laplace approximation

green: global variation

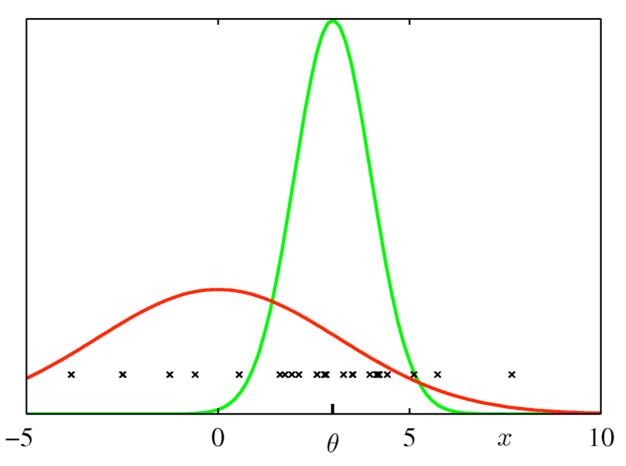
blue: expectation-propagation

Remember: GP Classification

$$p(\mathbf{f} \mid X, \mathbf{y}) = \frac{p(\mathbf{y} \mid \mathbf{f})p(\mathbf{f} \mid X)}{p(\mathbf{y} \mid X)}$$

- The likelihood term is not a Gaussian!
- This means, we can not compute the posterior in closed form.
- There are several different solutions in the literature, e.g.:
 - Laplace approximation
 - Expectation Propagation
 - Variational methods

The Clutter Problem



 Aim: fit a multivariate Gaussian into data in the presence of background clutter (also Gaussian)

$$p(\mathbf{x} \mid \boldsymbol{\theta}) = (1 - w)\mathcal{N}(\mathbf{x} \mid \boldsymbol{\theta}, I) + w\mathcal{N}(\mathbf{x} \mid \mathbf{0}, aI)$$

• The prior is Gaussian:

$$p(\boldsymbol{\theta}) = \mathcal{N}(\boldsymbol{\theta} \mid \mathbf{0}, bI)$$

The Clutter Problem

The joint distribution for $\mathcal{D} = (\mathbf{x}_1, \dots, \mathbf{x}_N)$ is $p(\mathcal{D}, \boldsymbol{\theta}) = p(\boldsymbol{\theta}) \prod_{n=1}^N p(\mathbf{x}_n \mid \boldsymbol{\theta})$

this is a mixture of 2^N Gaussians! This is intractable for large N. Instead, we approximate it using a spherical Gaussian:

$$q(\boldsymbol{\theta}) = \mathcal{N}(\boldsymbol{\theta} \mid \mathbf{m}, vI) = \tilde{f}_0(\boldsymbol{\theta}) \prod_{n=1}^N \tilde{f}_n(\boldsymbol{\theta})$$

the factors are (unnormalized) Gaussians:

$$\tilde{f}_0(\boldsymbol{\theta}) = p(\boldsymbol{\theta})$$
 $\tilde{f}_n(\boldsymbol{\theta}) = s_n \mathcal{N}(\boldsymbol{\theta} \mid \mathbf{m}_n, v_n I)$

EP for the Clutter Problem

- First, we initialize $\tilde{f}_n(\theta) = 1$, i.e. $q(\theta) = p(\theta)$
- Iterate:
 - Remove the current estimate of $\tilde{f}_n(\theta)$ from q by division of Gaussians:

$$q_{-n}(\boldsymbol{\theta}) = \frac{q(\boldsymbol{\theta})}{\tilde{f}_n(\boldsymbol{\theta})}$$

EP for the Clutter Problem

- First, we initialize $\tilde{f}_n(\theta) = 1$, i.e. $q(\theta) = p(\theta)$
- Iterate:
 - Remove the current estimate of $\tilde{f}_n(\theta)$ from q by division of Gaussians:

$$q_{-n}(\boldsymbol{\theta}) = \frac{q(\boldsymbol{\theta})}{\tilde{f}_n(\boldsymbol{\theta})}$$

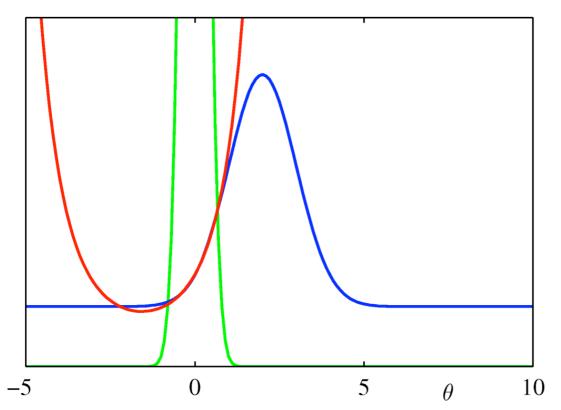
$$q_{-n}(\boldsymbol{\theta}) = \mathcal{N}(\boldsymbol{\theta} \mid \mathbf{m}_{-n}, v_{-n}I)$$

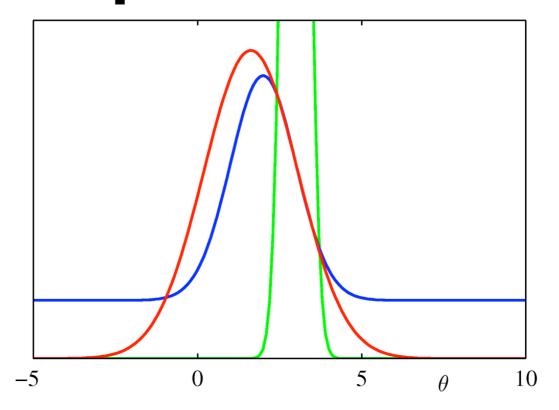
Compute the normalization constant:

$$Z_n = \int q_{-n}(\boldsymbol{\theta}) f_n(\boldsymbol{\theta}) d\boldsymbol{\theta}$$

- Compute mean and variance of $q^{\text{new}} \approx q_{-n}(\boldsymbol{\theta}) f_n(\boldsymbol{\theta})$
- Update the factor $\tilde{f}_n(\theta) = Z_n \frac{q^{\text{new}}(\theta)}{q_{-n}(\theta)}$

A 1D Example





- blue: true factor $f_n(\theta)$
- red: approximate factor $\tilde{f}_n(\theta)$
- green: cavity distribution $q_{-n}(\theta)$

The form of $q_{-n}(\theta)$ controls the range over which $\tilde{f}_n(\theta)$ will be a good approximation of $f_n(\theta)$

Summary

- Variational Inference uses approximation of functions so that the KL-divergence is minimal
- In mean-field theory, factors are optimized sequentially by taking the expectation over all other variables
- Expectation propagation minimizes the reverse KL-divergence of a single factor by moment matching; factors are in the exp. family