

Seminar: Recent Advances in 3D Computer Vision

Christiane Sommer
Computer Vision Group
Technical University of Munich

How can I access these slides?

- Option 1 (preferred): seminar web page
 - vision.in.tum.de/teaching/ws2018/seminar_3dcv
 - Password for material page: 3dcv_ws2018
 - Material page will go online June 26, 2018
- Option 2: contact organizer
 - Christiane Sommer, sommerc@in.tum.de
 - Only use this option if you forgot password

- General Information
 - About the Seminar
 - Registration
- Possible Papers
 - Static (RGB-)D scanning
 - RGB-D scan refinement (color/geometry)
 - Dynamic RGB-D scanning
 - Semantic monocular scanning
 - Scan completion
 - Learning 3D descriptors
- Questions

- General Information
 - About the Seminar
 - Registration
- Possible Papers
 - Static (RGB-)D scanning
 - RGB-D scan refinement (color/geometry)
 - Dynamic RGB-D scanning
 - Semantic monocular scanning
 - Scan completion
 - Learning 3D descriptors
- Questions

How is the seminar organized?

• Seminar meetings: talks and discussion

Time: Thursdays, 10:00 - 12:00

- Room: MI 02.09.023

Starting date: TBA (web page)

Two talks per week

- 14 participants \rightarrow 7 weeks

- Attendance is mandatory!
- Talk preparation / contact with supervisor
 - Read through your paper and write down what you don't understand
 - Approx. one month before talk: meet supervisor to clarify questions
 - One week before talk: meet supervisor to go through slides
 - Two weeks after talk: submit your report via email

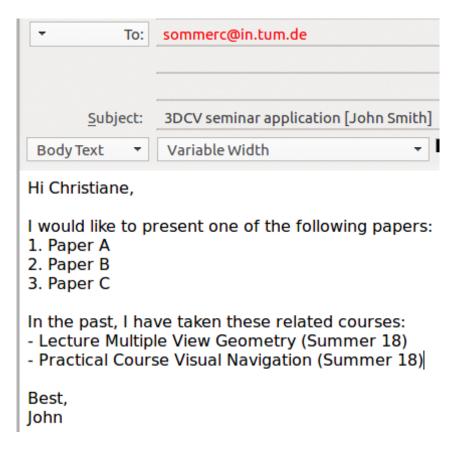
What are the requirements for the talk?

- General set-up:
 - Duration: 25-30 minutes talk + 10-15 minutes discussion
 - Make sure to finish on time!
 - Rule of thumb: 1-2 minutes per slide \rightarrow 15-30 slides
 - Do not put too much information on the slides!
- Recommended structure (talk only):
 - Introduction
 - Overview / Outline
 - Method description
 - Experiments and results
 - Personal comments
 - Summary

What about the final report?

- General set-up:
 - Use LATEX template provided on web page
 - Length: 6-10 pages
 - Send final report as pdf to supervisor by email
 - Submission deadline: two weeks after talk
- Recommended structure (main text only):
 - Introduction
 - Related work
 - Method description
 - Experiments and results
 - Discussion of results
 - Summary

- General Information
 - About the Seminar
 - Registration
- Possible Papers
 - Static (RGB-)D scanning
 - RGB-D scan refinement (color/geometry)
 - Dynamic RGB-D scanning
 - Semantic monocular scanning
 - Scan completion
 - Learning 3D descriptors
- Questions


How do you register for the seminar?

- Step 1: Official registration via TUM matching system
 - Go to matching.in.tum.de
 - Register for seminar named "Recent Advances in 3D Computer Vision"
- Step 2: Personal registration via email
 - In the list of papers on the web page, select your three favorites
 - Write an email containing these three favorites to sommerc@in.tum.de
 - Email subject: "3DCV seminar application [your name]"
 - Include information about related lectures / courses you have taken so far.
 - We do **not** need your CV or a motivation letter!
 - Registrations without email / emails with missing information will be ignored!
- Deadline for both registrations: July 4, 2018

How do you register for the seminar?

Example registration email:

How do we select candidates and assign papers?

- Candidate selection
 - Only students registered in the matching system AND
 emails containing all required information will be considered
 - Among students meeting the formal criteria, selection will be random
 - You will get notified by the matching system about the decision (July 12, 2018)
- Paper assignment
 - Papers are assigned after the participant list is finalized
 - We give our best to accommodate your preference list in the assignment

- General Information
 - About the Seminar
 - Registration
- Possible Papers
 - Static (RGB-)D scanning
 - RGB-D scan refinement (color/geometry)
 - Dynamic RGB-D scanning
 - Semantic monocular scanning
 - Scan completion
 - Learning 3D descriptors
- Questions

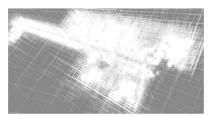
Real-time 3D reconstruction at scale using voxel hashing

Nießner et al. 2013

- efficient storage of volumetric SDF grid using hash table
- track camera using depth values only

Large-Scale Multi-Resolution Surface Reconstruction from RGB-D Sequences

Steinbrücker et al. 2013


Input Image

Reconstructed model

Reconstructed view

Octree Structure

- efficient storage of volumetric SDF grid using octree
- track camera using direct RGB-D image alignment

Robust Reconstruction of Indoor Scenes

Choi, Zhou, Koltun 2015

- register scans based on geometric information
- globally optimize using line processes

BundleFusion: Real-Time Globally Consistent 3D Reconstruction Using On-the-Fly Surface Reintegration

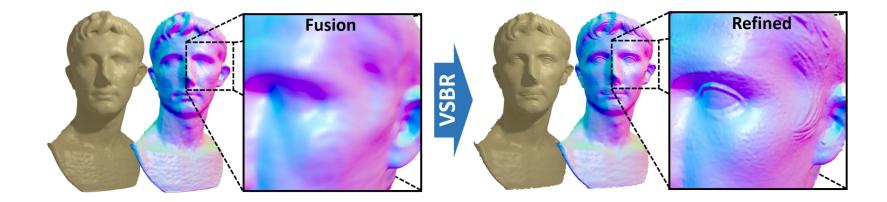
Dai et al. 2016

use all depth and color data to obtain consistent mapping

- General Information
 - About the Seminar
 - Registration
- Possible Papers
 - Static (RGB-)D scanning
 - RGB-D scan refinement (color/geometry)
 - Dynamic RGB-D scanning
 - Semantic monocular scanning
 - Scan completion
 - Learning 3D descriptors
- Questions

Color map optimization for 3D reconstruction with consumer depth cameras

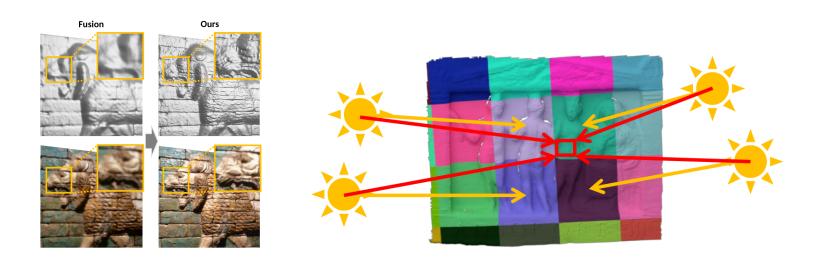
Zhou, Koltun 2014



- optimize color using photoconsistency assumption
- non-rigid correction

Shading-based Refinement on Volumetric Signed Distance Functions

Zollhöfer et al. 2014



- optimize geometry using shading (color) information
- use signed distance functions to represent geometry

Intrinsic3D: High-Quality 3D Reconstruction by Joint Appearance and Geometry Optimization with Spatially-Varying Lighting

Maier et al. 2017

- optimize geometry and color using shading information
- allow for spatially-varying lighting

- General Information
 - About the Seminar
 - Registration
- Possible Papers
 - Static (RGB-)D scanning
 - RGB-D scan refinement (color/geometry)
 - o Dynamic RGB-D scanning
 - Semantic monocular scanning
 - Scan completion
 - Learning 3D descriptors
- Questions

Fusion4D: real-time performance capture of challenging scenes

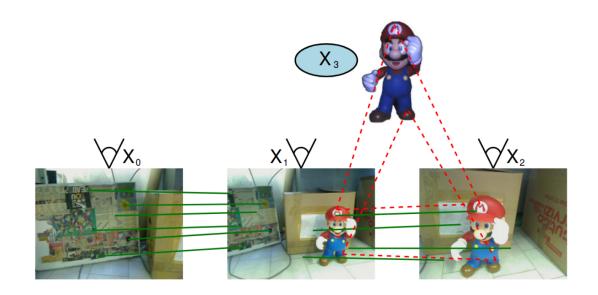
Dou et al. 2016

• dynamic (non-rigid) scanning in multi-view set-up

VolumeDeform: Real-time Volumetric Non-rigid Reconstruction

Innmann et al. 2016

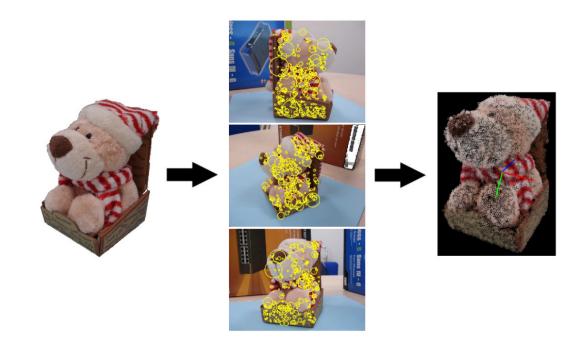
dynamic (non-rigid) scanning with a single camera



- General Information
 - About the Seminar
 - Registration
- Possible Papers
 - Static (RGB-)D scanning
 - RGB-D scan refinement (color/geometry)
 - Dynamic RGB-D scanning
 - Semantic monocular scanning
 - Scan completion
 - Learning 3D descriptors
- Questions

Joint Detection, Tracking and Mapping by Semantic Bundle Adjustment

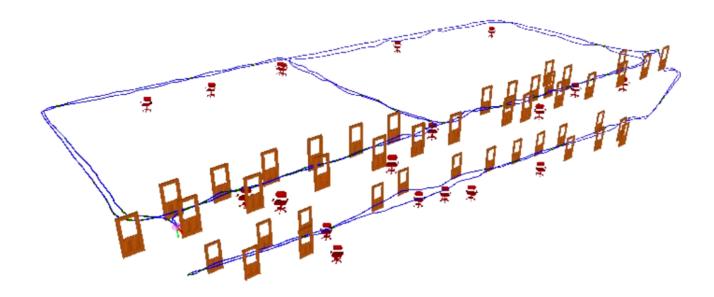
Fioraio, Di Stefano 2013



use rigid bodies as features for camera tracking

Real-time monocular object SLAM

Gálvez-López et al. 2016

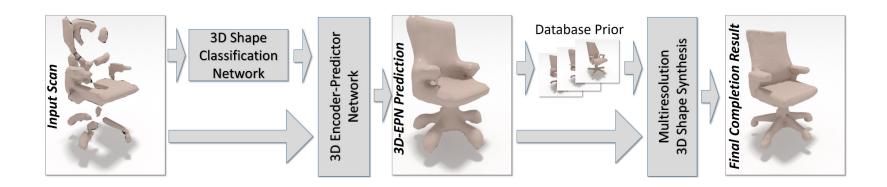


large database of objects for semantic SLAM

Probabilistic data association for semantic SLAM

Bowman et al. 2017

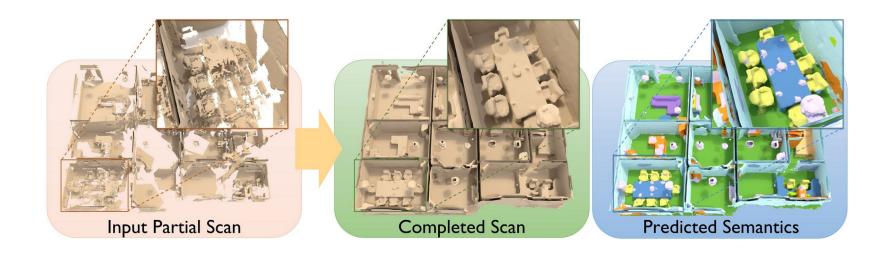
• focus on data association (which object observations correspond to same object)



- General Information
 - About the Seminar
 - Registration
- Possible Papers
 - Static (RGB-)D scanning
 - RGB-D scan refinement (color/geometry)
 - Dynamic RGB-D scanning
 - Semantic monocular scanning
 - Scan completion
 - Learning 3D descriptors
- Questions

Shape Completion using 3D-Encoder-Predictor CNNs and Shape Synthesis

Dai, Qi, Nießner 2017

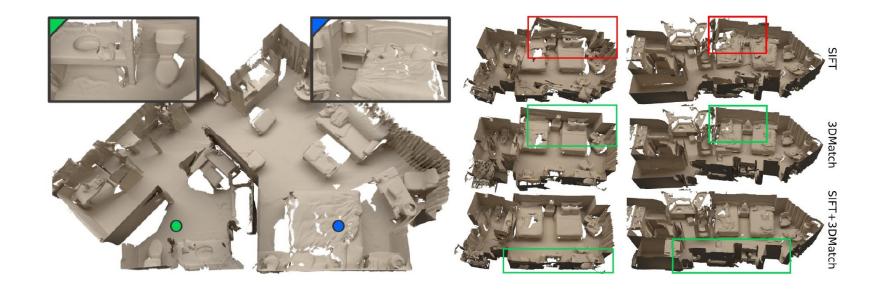


- use partial scans as input
- complete shape using encoder-predictor network

ScanComplete: Large-Scale Scene Completion and Semantic Segmentation for 3D Scans

Dai et al. 2018

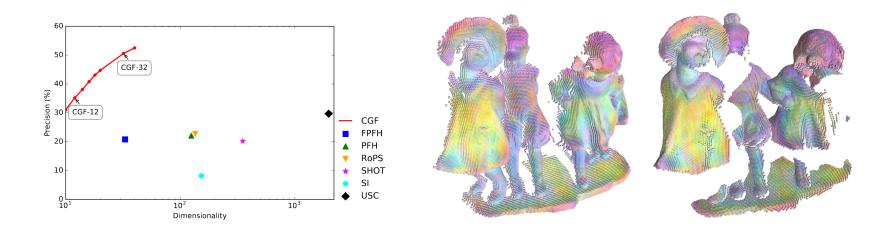
scan completion for whole scenes



- General Information
 - About the Seminar
 - Registration
- Possible Papers
 - Static (RGB-)D scanning
 - RGB-D scan refinement (color/geometry)
 - Dynamic RGB-D scanning
 - Semantic monocular scanning
 - Scan completion
 - Learning 3D descriptors
- Questions

3DMatch: Learning Local Geometric Descriptors from RGB-D Reconstructions

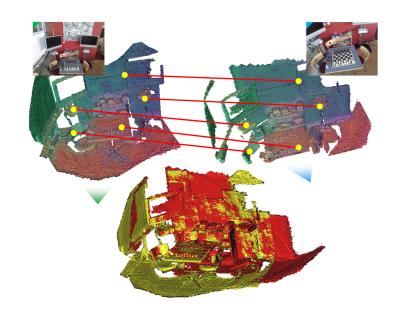
Zeng et al. 2017



- represent volume as truncated distance function
- extract descriptors for local patches

Learning Compact Geometric Features

Khoury, Zhou, Koltun 2017



- · extract descriptors for points in point cloud
- use histogram of points as network input

PPFNet: Global Context Aware Local Features for Robust 3D Point Matching

Deng, Birdal, Ilic 2018

use point pair features (PPFs) as network input

Questions?

Reminder:

• Web page: vision.in.tum.de/teaching/ws2018/seminar_3dcv

• Password: 3dcv_ws2018

• Contact: Christiane Sommer, sommerc@in.tum.de