

Seminar: Shape Analysis and Optimization

Preparation Meeting, 28.06.2018

Zorah Lähner, Thomas Möllenhoff, Matthias Vestner

What you will learn

Get an overview on research in Shape Analysis

Be able to read and understand scientific publications

Prepare and give a talk

Write a scientific report

Preparation

- You do not need to (and should not) work on your topic alone
- Meet at least twice with your supervisor
- It is your responsibility to contact your supervisor for these meetings

Presentation

- ~20 slides
- use visualizations
- number your slides
- do not make slides full of text
- explain things you had problems understanding when first reading your paper in more detail
- reference the original authors

Recommended structure

- 1. Introduction of the problem
- 2. Approach
- 3. Results (if any)
- 4. Summary

Report

- Overview and main contributions of the assigned topic
- Not a copy of your assigned material, focus on parts that you found interesting but discuss them more in-depth or concepts you had to do additional work to understand
- The report is due 2 weeks after the talk and gives you the chance to make up for questions that were left
- 6-10 pages
- Latex template available on the homepage
- Use your text editor of choice if you must but keep the style similar to the template

Evaluation Criteria

- Attendance at each meeting is necessary! Contact us beforehand if you have other appointments.
- Participation (questions, discussions) influences the final grade
- Report and presentation should be more detailed than the original paper
 - 1. Choose the main aspects and interesting subtopics
 - 2. Understand them in every detail
 - 3. It may be necessary to check related articles or text books
 - 4. Prepare the topic such that it is understandable to the other participants of the seminar

Shape Matching – finding the same points on non-rigidly deformed shapes

Spectral decomposition on manifolds and their applications

Cloth Modeling and Animation

Learning Texture and Detail Transfer

Multidimensional Scaling Using Majorization: SMACOF in R

Jan de Leeuw University of California, Los Angeles Patrick Mair WU Wirtschaftsuniversität Wien

Auction Algorithms for Network Flow Problems: A Tutorial Introduction ¹

 $\mathbf{b}\mathbf{y}$

Dimitri P. Bertsekas²

$$\underset{\mathbf{\Pi}\in\mathcal{P}_n}{\operatorname{argmin}} \|\mathbf{\Pi}F_{\mathcal{X}} - F_{\mathcal{Y}}\|^2$$

$$= \operatorname*{argmax}_{\mathbf{\Pi} \in \mathcal{P}_n} \langle \mathbf{\Pi}, F_{\mathcal{Y}} F_{\mathcal{X}}^{\top} \rangle$$

Fast Matching of Planar Shapes in Sub-cubic Runtime *

Frank R. Schmidt
Computer Science Department
University of Bonn, Germany

Dirk Farin
University of Technology
Eindhoven, The Netherlands

Daniel Cremers
Computer Science Department
University of Bonn, Germany

Geometrically Consistent Elastic Matching of 3D Shapes: A Linear Programming Solution

Thomas Windheuser¹, Ulrich Schlickewei¹, Frank R. Schmidt² and Daniel Cremers¹

¹Technische Universität München

²University of Western Ontario

Elastic matching of planar shapes [18]

Proposed elastic matching of 3D shapes

Efficient Deformable Shape Correspondence via Kernel Matching

Matthias Vestner* TU Munich

TAU

Zorah Lähner* TU Munich

Amit Boyarski* Technion

Or Litany TAU

Ron Slossberg Technion

Tal Remez Emanuele Rodolà Sapienza University of Rome / USI Lugano

Alex Bronstein Technion / TAU / Intel

Michael Bronstein USI Lugano / TAU / Intel

Ron Kimmel Technion / Intel

Daniel Cremers TU Munich

Optimal Transport – A geometric toolbox to compare probability distributions

$$\inf_{T:X\to Y} \int_X c(x,T(x))d\mu(x) \text{ s.t. } T_{\sharp}\mu = \nu$$

Wasserstein Barycenters – geometric interpolation between shapes

Convolutional Wasserstein Distances: Efficient Optimal Transportation on Geometric Domains [Solomon et al., '15]

Generative Modeling – "learn" a probability distribution

[Credit: Marco Cuturi]

Busino game camperate spent odea In the bankaway of smarling the SingersMay , who kill that imvic Keray Pents of the same Reagun D Manging include a tudancs shat "His Zuith Dudget , the Denmbern In during the Uitational questio Divos from The 'noth ronkies of She like Monday , of macunsuer S

Solice Norkedin pring in since ThiS record (31.) UBS) and Ch It was not the annuas were plogr This will be us, the ect of DAN These leaded as most-worsd p2 a0 The time I paidOa South Cubry i Dour Fraps higs it was these del This year out howneed allowed lo Kaulna Seto consficutes to repor

Wasserstein Generative Adversarial Networks [Arjovsky et al., '17]

Shape Matching using the Gromov-Wasserstein Distance

Source

Targets

Entropic Metric Alignment for Correspondence Problems [Solomon et al., '16]

Registration

- Computer Science students apply through the TUM Matching platform (matching.in.tum.de)
- Mathematics students apply through TUMonline
- There are 18 places in total, max. 6 for math the rest for cs students
- We gave around a list, students on it will have priority in the matching process
- Send your transcript of records to: shapeseminar@vision.in.tum.de

Assignment of Topics

- A complete list of topics will be available on the homepage next week
 - vision.in.tum.de/teaching/ws2018/seminar_shapeanalysis/
 - Password: ThisIsShape
- If you got assigned to this seminar, send us an email to shapeseminar@vision.in.tum.de with your four favorite topics
- Topics will be assigned by first come first serve

Any Questions?

Do not forget to put your name in the list. Students who attended this meeting will have priority.

Email: shapeseminar@vision.in.tum.de

Webpage: vision.in.tum.de/teaching/ws2018/seminar_shapeanalysis/

Password: ThisIsShape