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1. Course contents and preliminary knowledge 

§ General overview of computer vision tasks
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1. Course contents and preliminary knowledge 

§ Computer vision

Real	world	cameras Image	and	video	sequences

Object	detection
Object recognition
Object	tracking
Segmentation

…
SLAM

CV	tasks
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1. Course contents and preliminary knowledge

§ What is SLAM? Simultaneous localization and mapping 

Indoor/outdoor	 localization
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1. Course contents and preliminary knowledge 

§ Computer vision

Dense/semi-dense	reconstruction
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1. Course contents and preliminary knowledge 

§ What is SLAM?

RGB-D	dense	 reconstruction
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1. Course contents and preliminary knowledge 

§ SLAM applications

Hand-held	devices Autonomous	 driving Augmented	 reality/VR
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1. Course contents and preliminary knowledge 

§ Computer vision

Harley	and	Zisserman,	
Multiple	view	geometry	
in	computer	vision

Tim	Barfoot,	State	
estimation	for	robotics
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2. Framework of SLAM

§ SLAM problem
§ Fundamental 

problems in 
intelligent robots

§ Where am I?
-Localization

§ What is around me? 
-Mapping

§ Chicken and egg problem
§ Localization needs 

accurate map
§ Mapping needs 

accurate localization
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2. Framework of SLAM

§ How to do SLAM? -Sensors
§ Sensor is the way to measure the outside environment
§ Interoseptive sensors: accelerometer, gyroscope …
§ Exteroceptive sensors: camera, laser rangefinder, GPS …

Some	sensors	must	be	
placed	in	a	cooperative	
environment,	 other	can	
be	directly	equipped	 in	
the	robot	itself
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2. Framework of SLAM

§ Visual SLAM 
§ Cameras

§ Monocular
§ Stereo
§ RGB-D
§ Omnidirectional, Event camera, etc

§ Cameras
§ Cheap, rich information
§ Record 2D projected image of the 

3D world
§ The 3D-2D projection throws away 

one dimension: distance

Monocular	camera

RGB-D	(depth)	 camera

Stereo	camera
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2. Framework of SLAM

§ Various kinds of cameras:
§ Monocular: image only, need 

other methods to estimate the 
depth

§ Stereo: disparity to depth
§ RGB-D: physical depth 

measurements

Moving	stereo:	disparity	 can	be	estimated	in	the	motion

Stereo	vision	 estimates	the	depth	from	disparity

Ambiguity	in	mono	 vision:	 small	+	close	or	large	+	far	away?
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2. Framework of SLAM

§ SLAM framework

Sensor	data
Front-end:
Visual	
odometry

Back-end:
Filter	or	
Optimization

Mapping

Loop	Closing
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2. Framework of SLAM

§ Visual odometry
§ Motion estimation between 

adjacent frames
§ Simplest: two-view 

geometry
§ Method

§ Feature method
§ Direct method

§ Backend
§ Long-term trajectory and 

map estimation
§ MAP: Maximum of a Posteri
§ Filters/Graph Optimization
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2. Framework of SLAM

§ Loop closing
§ Correct the drift in 

estimation
§ Loop detection and 

correction

§ Mapping
§ Generate globally consistent 

map for 
navigation/planning/commu
nication/visualization etc

§ Grid/topological/hybrid 
maps 

§ Pointcloud/Mesh/TSDF …

Long-time	
trajectory	is	not	
accurate	due	 to	
estimation	drifts

2D	grid	map 2D	topological	map

TSDF	modelsPoint	cloud	maps
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2. Framework of SLAM

§ Mathematical representation of visual SLAM
§ Assume a camera is moving in 3D space

§ But measurements are taken at discrete times: 

Motion	model

Observation	model

Non-linear	form

!𝑥# = 𝐴#𝑥#&' + 𝐵#𝑢# +𝑤#
𝑧#,. = 𝐶.𝑦. + 𝐷#𝑥# + 𝑣#,.

linear	form
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2. Framework of SLAM

§ Questions: 

§ How to represent state variables? 
§ 3D geometry, Lie group and Lie algebra

§ Exact form of motion/observation model?
§ Camera intrinsic and extrinsics

§ How to estimate the state given measurement data?
§ State estimation problem
§ Filters and optimization  

Motion	model

Observation	model
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3. 3D geometry

§ Point and Coordinate system
§ 2D: (x,y) and angle
§ 3D?
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3. 3D geometry

§ 3D coordinate system
§ Vectors and their coordinates

Right	handed Left	handed
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3. 3D geometry

§ Vector operations
§ Addition/subtraction
§ Dot product

§ Cross product

Skew-symmetric	operator
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3. 3D geometry

§ Questions
§ Compute the coordinates in different systems? 

§ In SLAM:
§ Fixed world frame
§ Moving camera frame
§ Other sensor frames
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3. 3D geometry

§ 3D rigid body motion can be described with rotation and translation

§ Translation is just a vector addition
§ How to represent rotations? 
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3. 3D geometry

§ Rotation
§ Consider coordinate system                        is rotated and become 
§ Vector      is fixed, then how are its coordinates changed? 

§ Left multiplied by  𝑒'
4, 𝑒54, 𝑒64 4

Rotation	matrix
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3. 3D geometry

§ R is rotation matrix, which satisfies:
§ R is orthogonal
§ Det(R) = +1 (if Det(R)=-1 then it’s improper rotation)

§ Special orthogonal group:

§ Rotation from frame 2 to 1 can be written as: 

𝑎' = 𝑅'5𝑎5 𝑎5 = 𝑅5'𝑎'and	vise	vesa:	

𝑅5' = 𝑅'5&' = 𝑅'54
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3. 3D geometry

§ Rotation plus translation:

§ Compounding rotation and translation:
§

§ Homogeneous form: 

Inverse:
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3. 3D geometry

§ Homogenous  coordinates:

§ Transform matrix forms Special Euclidean Group

!a =
a
1
⎡

⎣
⎢

⎤

⎦
⎥ !a = a

1
⎡

⎣
⎢

⎤

⎦
⎥ = k

a
1

⎡

⎣
⎢

⎤

⎦
⎥

Still	keeps	equal	when	multiplying	 any	non-zero	factors
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3. 3D geometry

§ Alternative rotation representations
§ Rotation vectors
§ Euler angles
§ Quaternions

§ Rotation vectors
§ Angle + axis:
§ Rotation angle
§ Rotation axis

§ Rotation vector to rotation matrix:    Rodrigues’ formula

§ Inverse:

Rotation	vectors
𝜃𝑛
𝜃
𝑛

Only	three	parameters
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3. 3D geometry

§ Euler angles
§ Any rotation can be decomposed into three principal rotations

§ However the order of axis can be defined very differently:
§ Roll-pitch-yaw (in navigation)      Spin-nutation-precession in mechanics

Original First Second Third

XYZ	order 3-1-3	order
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3. 3D geometry

§ Gimbal lock
§ Singularity always exist if we want to use 3 parameters to describe 

rotation
§ Degree-of-Freedom is reduced in singular case
§ In yaw-pitch-roll order, when pitch=90 degrees

normal singular
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3. 3D geometry

§ Quaternions
§ In 2D case, we can use (unit) complex numbers to denote rotations

§ How about 3D case?
§ (Unit) Quaternions

§ Extended from complex numbers
§ Three imaginary and one real part:
§ The imaginary parts satisfy:

z = x + iy = ρeiθ Multiply	 i to	rotate	90	degrees

i,j,k look	like	complex	numbers	when	multiplying	
with	themselves
And	 look	like	cross	product	when	multiply	with	
others
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3. 3D geometry

§ Quaternions

§ Operations
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3. 3D geometry

§ From quaternions to angle-axis:

§ Inverse: 

§ Rotate a vector by quaternions:
§ Vector     is rotated by     and become      , how to write their relationships? 
§ Write     as quaternion (pure imaginary):
§ Then:

𝑝 𝑞 𝑝′
𝑝

Also	pure	imaginary
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4. Lie Group and Lie Algebra

§ Recall the mathematic model of SLAM

§ We use SO(3) and SE(3) to represent the pose of camera
§ Let’s consider optimizing some function of rotation/transform

§ Rotation and transform matrix don’t have a plus operator!

Motion	model

Observation	model

𝑓(𝑅)
𝑑𝑓

𝑑𝑓(𝑅)
𝑓(𝑅 + 𝛥𝑅) − 𝑓(𝑅)

𝛥𝑅
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4. Lie Group and Lie Algebra

§ Group
§ 3D rotation matrix forms the Special Orthogonal Group

§ 3D transform matrix forms the Special Euclidean Group

§ What is Group?
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4. Lie Group and Lie Algebra

§ Group
§ Group is a set with an operator            that satisfies the following: 

§ Obviously,
§ are groups

𝐴,⋅

1.	Closure

2.	Associativity

3.	Identity

4.	Invertibility

𝑆𝑂(3),⋅), (𝑆𝐸(3),⋅
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4. Lie Group and Lie Algebra

§ Lie Group
§ Group that is smooth
§ Group that is also a manifold
§ “Locally looks like      ”
§ Further explanation needs knowledge from topology and differential 

geometry
§ SO(3) and SE(3) are also Lie groups

§ Lie Algebra
§ Tangent space of the Lie group at identity
§ SO(3)->so(3), SE(3)->se(3)

𝑅I
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4. Lie Group and Lie Algebra

§ Introducing of the Lie Algebra
§ Assume a time-varying rotation matrix
§ It satisfies: 

§ Take derivative of time     at both sides: 

§ Rearrange: 

𝑅(𝑡)

𝑡

Skew-symmetric
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4. Lie Group and Lie Algebra

§ Denote the skew-symmetric matrix as   

§ Put R(t) to the right side: 
§ It looks like when we take the derivative, we will get a            at the 

left side

§ Assume we are close to identity:  
§ And           does not change:

§ With                , we solve this ODE:

𝜙 𝑡 ∧

𝜙 𝑡 ∧

𝑡M = 0,𝑅 0 = 𝐼

𝜙 𝑡 ∧

𝑅 0 = 𝐼
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4. Lie Group and Lie Algebra

§ So, if     is close to 0, then we can always find an      given

§ is called a Lie algebra
§ From a Lie algebra, if we take a Exponential Map, then it becomes a 

Lie group

§ Questions:
§ Lie algebra’s definition and constraints? 
§ How to compute the exponential map?

𝑡 𝑅 𝜙

𝜙
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4. Lie Group and Lie Algebra

§ Lie algebra:
§ We have a Lie algebra for each Lie group, which is a vector space (the 

tangent space) at the identity
§ Lie algebra has a vector space     over field      together with a binary 

operator (Lie bracket)        , that satisfies:
§ Closure: 
§ Bilinearity: for any   

§ Alternativity: 
§ Jacobi identity: 

𝑉 𝐹
,
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4. Lie Group and Lie Algebra

§ Example:                   is a Lie algebra
§ Lie algebra so(3): 

§ where  

§ And the Lie bracket is:

𝑅6,𝑅,×
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4. Lie Group and Lie Algebra

§ Similarly, for SE(3) we also have se(3): 

§ Where                                                and Lie bracket is:

§ Note:
§ The definition of se(3) may be different in literature
§ Vector or matrix are both ok to define a lie algebra

NOTE	in	se(3)	 this	operator	is	not	a	skew-symmetric	
matrix,	but	we	still	keeps	its	form
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4. Lie Group and Lie Algebra

§ Exponential map
§ Operator from Lie algebra to Lie group:
§ Here        is a 3x3 matrix so this exponential map is a matrix operator
§ Take Taylor expansion:

§ Directly computing this Taylor expansion is intractable

𝑅 = exp 𝜙∧

𝜙∧
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4. Lie Group and Lie Algebra

§ Take the length and direction of      , then
§ For a unit-length vector, we have:  

𝜙 = 𝜃𝑎𝜙

This	will	be	useful	when	handling	 the	
high-order	 Taylor	expansion	 items
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4. Lie Group and Lie Algebra

§ Compute the Taylor expansion: 

§ Finally we get: 

§ Which is exactly the Rodrigues’ formula!
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4. Lie Group and Lie Algebra

§ So so(3) is just the rotation vector 
§ Same as exponential map, we can also define logarithm map as: 

§ And also don’t need to actually compute this stuff, we take the 
conversion equations from rotation matrix to rotation vector:
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4. Lie Group and Lie Algebra

§ For SE(3), the exponential map is: 

§ The rotation part is just a SO(3), but the translation part has a 
Jacobian matrix: (left as an assignment)
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Rotation	matrix

Transform	matrix

Lie	group

Lie	groupLie	group

Lie	algebra

Lie	algebra

Exponential

Exponential

Logarithm

Logarithm

4. Lie Group and Lie Algebra



4. Lie Group and Lie Algebra

§ Next question
§ We still don’t have plus operation for Lie group
§ Then we can’t define derivatives

§ Solution
§ Take advantage of the plus in the Lie algebra, and convert it back to Lie 

group

§ A primal question:
§ Plus in Lie algebra is equal to multiplication in Lie group?
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4. Lie Group and Lie Algebra

§ Unfortunately, this does not work for matrices
§ Baker-Campbell-Hausdorff formula gives the full version of this 

multiplication: 

§ where
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4. Lie Group and Lie Algebra

§ First part of BCH formula:

§ If A or B is small enough we can keep the linear item only, the BCH 
can be approximately written as:

§ where
Left	Jacobian

Right	Jacobian
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4. Lie Group and Lie Algebra

§ Rewrite it (we take left multiplication as an example)

§ Left multiplication in Lie group means an addition in Lie algebra with 
an Jacobian

§ Inversely, if we do addition in Lie algebra, the in Lie group:

58



4. Lie Group and Lie Algebra

§ Similar in SE(3)’s case:

§ Where: 
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4. Lie Group and Lie Algebra

§ With BCH formula, we can define the derivate of a function of a 
rotation or transform matrix

§ Example: rotating a point
§ We want to know the derivative: 

§ We have two solutions:
§ Add a small item in the Lie algebra, and set its limit to zero (Derivative 

model)
§ (Left) Multiply a small item in the Lie group, and set its Lie algebra’s 

limit to zero (Disturb model)

𝑝
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4. Lie Group and Lie Algebra

§ Derivative model: 
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4. Lie Group and Lie Algebra

§ Disturb model:

§ More simple and clear
§ In some literature we use operator      to denote this disturb model⊕

𝛥𝑅⊕ 𝑅 = exp 𝛿𝜙∧ 𝑅
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4. Lie Group and Lie Algebra

§ Disturb model in SE(3): 
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Questions?
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