Computer Vision Group m

Prof. Daniel Cremers

Technische Universitat Minchen

Practical Course: Vision-based Navigation
WS 2018/2019

Lecture 2. Camera Models and
Optimization

Vladyslav Usenko, Nikolaus Demmel,
Prof. Dr. Daniel Cremers

Contents

= (Camera Intrinsic and Extrinsic

= From State Estimation to Least Squares
= Batch Least Square

= Application: Camera Calibration

Contents

* (Camera Intrinsic and Extrinsic

= From State Estimation to Least Squares
= Batch Least Square

= Application: Camera Calibration

1. Camera intrinsic and extrinsic

= (o back to the first page:
L = f (33k—1, ug, wk) Motion model
Zij = h(yj, @k, v j) Observation model

= (Cameras give you the images of the world
= How are these pixels projected from the 3D environment?

1. Camera intrinsic and extrinsic

Pinhole camera

By similar triangles:

% ' Focal length /\

“f\ Optical
= center

."
Camera’s frame O-x-y-z
Pin-hole camera model

™S~ Similar triangles

1. Camera intrinsic and extrinsic

= Pinhole cameras

From image plane d
to pixels:
u=aX +c, :
v=pBY"+¢, . ?ca”ength /\
o T Optical
Take into: =L center
r ¢ X
X' =Tz
Y=)Z y ™~ °~ Similar triangl
- imilar triangles
Camera’s frame O-x-y-z &
Then we get:
Pin-hole camera model

v = fy% + cy

1. Camera intrinsic and extrinsic

= Pinhole models: {u = fo3 + o

= Matrix form: Bt 7t left
u O leTt:

u
A1
2 ZKP. Z |

= K 1s called as intrinsic camera matrix
= Which is fixed for each real camera
= And can be calibrated before running slam.

fr 0 ¢
0 f, ¢y
0 0 1

1. Camera intrinsic and extrinsic

= Distance 1s lost during the projection

Unit plane

, Possible position of 3D point P
Pixel plane

z=1
Camera frame /P//_o/

O__/"”

s |

y

1. Camera intrinsic and extrinsic

= There’s another rotation and translation from the world to the camera

Uu

ZPyw=27|v | =K(RP,+t)= KTP,.

= Here R,tor T is called as extrinsic

= Note we assume the homogeneous coordinates are cast to non-
homogenous coordinates automatically

= In SLAM, the extrinsic R,t is our estimate purpose

1. Camera intrinsic and extrinsic

* Summary

= Projection orders: world->camera->unit plane->pixels

Unit plane
=1

_ Possible position of 3D point P
Pixel plane
Camera frame P /o/

y

10

1. Camera intrinsic and extrinsic

= Distortion

= Lens will cause distortion when you have a wide range lens

Wide range lens Fisheye cameras

11

1. Camera intrinsic and extrinsic

= Distortion types: radial distortion and tangential distortion

|
ez

Original image Barrel distortion ~ Pincushion distortion

Image plane

1. Camera intrinsic and extrinsic
Distortion

= Mathematic form

Xgistortea = X (1 + klrz + k27”4 + k3r6) Xgistorted = X T 2P1Xy + Dy (rz + zxz)

Ydistorted = y(l + le'Z + k27”4 + k3r6) Ydistorted — Y + P1 (rz + zyZ) + szxy
Radial distortion tangential distortion

= Put them together

Xaistortea = X(1 + kq1r® 4+ kyr* + k3r°) 4+ 2pyxy + p, (r* + 2x%)
Yaistortea = Y (1 + kyr? + kyr* + k3r®) + py (r? + 2y%) + 2p,xy

= In practice, you can choose the order of distortion params

13

1. Camera intrinsic and extrinsic:
(Extended) Unified Camera Models

/7{ i:[fx,fy,cx,cy,a,ﬁ]T,Oc € 0,1, > 0
ﬁ X,i) = [fxm Cx
S A A Y A i : *[}

fyad+(1—o¢)z
d= VBT 12

14

1. Camera intrinsic and extrinsic:

Kannala-Brandt Model

1= [fmfyaCX7Cy7k17k27k37k4]T

o= [t 1]+ o]

Va2 +)2,0 = atan2(r,z),

=
d(0) =04k 0°+k0°+k0" 4 ks6°

15

1. Camera intrinsic and extrinsic:
Double Sphere Camera Model

X

TC(X, i) _ [fxad2+(1a)(§d1+z)

hatraEaT

dy = /x> +y*+ 22,
dy = /X2 +y2+ (Edy +2)?,

More info:

Vladyslav Usenko, Nikolaus Demmel, and Daniel Cremers. “The Double Sphere

Camera Model”. In: Proc. of the Int. Conference on 3D Vision (3DV). Sept.
2018. eprint: http://arxiv.org/abs/1807.08957.

16

1. Camera intrinsic and extrinsic

Stereo camera

= Two cameras (usually) placed horizontally

—

Left eye

—

baseline

Right eye

Geometric model

= The distance between left camera center to the right 1s called as baseline

" From geometric model:

z— f B b—wu; +up 2

A
Ve

17

b

~
~

_ It

d = Uy —uUpR.
d

Structured light
D

emit / \ return
|‘ . Il N }
IR emitter IR receiver
IR emitter

RGB camera
l IR receiver

-

1. Camera intrinsic and extrinsic

Time-of-Flight

return \

emit
impulse receiver |mpulse
P emitter

RGB-D cameras

1. Camera intrinsic and extrinsic

= Images

= 2D arrays stored in computer

= Usually 0-255 (1 byte) grayscale values after quantification

Origin x \ X-axis, width In each pixel
/
Grayscale image: 0-255 (1 byte)
. I Depth images: 0-65535 (2 bytes)
‘ i Color images: multiple channels
Pixel coordinates (x BGR, RGB,RGBA, etc
(xy) 1 byte for each channel
Y-axis, /
height BlG|r|B|c|r
- 24 bits —
Image

19

Contents

= (Camera Intrinsic and Extrinsic

* From State Estimation to Least Squares
= Batch Least Square

= Application: Camera Calibration

20

2. From state estimation to least square

= Recall the motion model and observation model

(
Ll — f (mkt—lauk‘,ywk‘)

L 2k, — h(yjawk7avk3,j)

= How to estimate the unknown variables given the observation data?

21

2. Batch state estimation

= Batch approach

= (Give all the measurements

= To estimate all the state variables

= State variables:

Observation and input:

u = {ul,uz,"'},Z = {Zk,j}

= Our purpose:

P(x|z,u).

= Bayes’ Rule:

Likehood Priori

p(x|u,z) =

P(z|x, wp(x|u)
P(z|u)

Posteriori

22

2. From state estimation to least square

= [t 1s usually hard to write out the full distribution of Bayes’ formula,
but we can:

= MAP: Maximum A Posteriori
P(z|x,u)P(x|u)

P(z|u)
= argmaxP (z|x)P(x|u) 1

Xpap = argm;le(x|u, Z) = argmax

Drop denominator because it
is not relevant with x

Drop u because z is not relevant with u

* “In which state 1t 1s most likely to produce such measurements”

23

2. From state estimation to least square

= From MAP to batch least square

= We assume the noise variables are independent, so that the joint pdf
can be factorized:

K
P(z|x) = HP(Zklxk)
k=0

= Let’s consider a single observation: Z,j = h (Y, Tr) + vk 5,
= Affected by white Gaussian noise: Uy i~ N(o, Qk,j)

= The observation model gives us a conditional pdf:
P(zjklTr,y;) = N (h(yj, zr), Qr.j) -
* Then how to compute the MAP of x,y given z?

24

2. From state estimation to least square

= Gaussian distribution (matrix form)

P (@) = <———exp (50— = (@ =)
Jen)Y det()

P

* Take minus logarithm at both sides:

(z—p)"' =z —p).

_In(P(z)) = %ln ((zn)N det(E)) n

b | =

Constant w.r.t x Mahalanobis distance (sigma-norm)

= Maximum of P(x) is equivalent to minimum of —In(P(x))

25

2. From state estimation to least square

= Take this into the MAP:

Information matrix

Max: P(Zj,klmkayj) =N (h(yjaink)an,j)- /

T
mm) X,Y; = argmin ((Zk,j - h(y;, xk)) Qi k (Zk,j - h(y;, xk)))

1

Error or residual of single observation

= We turn a MAP problem into a least square problem

26

2. From state estimation to least square

= Batch least square

= QOriginal problem Least square
Define the errors(residuals)

xp = [(Tp—1, U, wi) et = @) — [(Tr—1,uk)
' ey ik = 2kj—h (. yj))

2k, = h (yja L, vk’,j)

Xyap = argmaxP(z|x)P(x|u)

* Sum of the squared residuals:

. T p-1 T —1
min J(x) = E e, 1By vk + E E :ey,k,ij,jey,k,j’
k ko j

27

2. From state estimation to least square

= Some notes:

_ T p-1 T —1
J(x) = E e, By evk + E E ey,k,ij,jeyskej‘
k ko j

Because of noise, when we take the estimated trajectory and map into the
models, they won’t fit perfectly

Then we adjust our estimation to get a better estimation (minimize the
€rror)

The error distribution is affected by noise distribution (information
matrix)

= Structure of the least square problem

Sum of many squared errors
The dimension of total state variable maybe high
But single error item is easy (only related to two states in our case)

If we use Lie group and Lie algebra, then 1t’s a non-constrained least
square

28

Contents

= (Camera Intrinsic and Extrinsic

= From State Estimation to Least Squares
» Batch Least Square

= Application: Camera Calibration

29

3. Batch least square

= How to solve a least square problem?
= Non-linear, discrete time, non-constrained

= Let’s start from a simple example

: Coe 1
= (Consider minimizing a squared error: min J(x) = minE IVAEIIIE
= When J is simple, just solve:
d xr € R"
Y_,
dx

* And we will find the maxima/minima/saddle points

Local optima in neural networks

30

3. Batch least square X

/ i
ZNN\\
= When J 1s a complicated function: ittt Coe)))]

= dJ/dx=0 1s hard to solve
= We use iterative methods

= Jterative methods
1. Start from a initial estimation Xgo

2. Atiteration k , we find a incremental 4x, to make ||f(x; + 4x,)]|5
become smaller

3. [Ifdx, is small enough, stop (converged)
If not, set xy4+1 = X, + 4x;, and returnto step 2.

31

3. Batch least square

= How to find the incremental part?
= By the gradient
* Taylor expansion of the object function:
. i 1
If(z+ Az) |3 ~ || f(2)|3 + J () Az + 5 Az HAz.

Jacobian Hessian

= First order methods and second order methods

= First order: (Steepest descent)

rrj;nllf(X)II% + JAx Incremental willbe: ~ Ax* = —J7T ().

Usually we need a step size

32

3. Batch least square

= Zig-zag in steepest descent

Other shortcomings
' e Slow convergence speed
Iy * Slow when close to the minimum

a5

33

3. Batch least square

= Second order methods

1
If(z+ Az) |2~ || f(2)|?+ J (z) Az + §Aa:THAac.

= Solve an increment to minimize 1it:

1
Az* =argmin || f (x) ||3 + J (z) Az + §Aa;THAa;.

Let the derivative to 4x be zero, then we get: HAx =—-JT.

= This is called Newton’s method

34

3. Batch least square

= Second order method converges more quickly than first order
methods

= But the Hessian matrix maybe hard to compute: HAz =-J7T.

= (Can we avoid the Hessian matrix and also keep second order’s
convergence speed?

= (Gauss-Newton
= Levenberg-Marquardt

35

3. Batch least square

= (Gauss-Newton
= Taylorexpansionof f(x): /(@ +Ax) = f(z)+J(z)Az.

= Then the squared error becomes:

| =

(f () + J (z) Az)" (f (z) + J (z) Az)

&

%Ilf () + J (z) Az|)* =

NS

= é (||f(a:)||% +2f (x)" J(x)Ax + Aa:TJ(:L‘)TJ(:I:)Aa:) :

= Also let its derivative with4x be zero:

H g HAx =g.

36

3. Batch least square

J(@)'J (z) Ax = —J(2)" [(@).
= Gauss-Newtonuse J()'/(x) as an approximation of the Hessian

" Therefore avoiding the computation of H 1n the Newton’s method

= But /()'J(x) is only semi-positive definite
= H maybe singular when JAT J has null space

37

3. Batch least square

= Levernberg-Marquardt method

= Trust region approach: approximationis only valid in a region
= Evaluate if the approximationis good:

p= fl+Ax)— | (m). Real descent/approx. descent
J(x)Ax

= [frho 1s large, increase the region

= [frho is small, decrease the region

1
= LM optimization:) 1 Cer) + JCeddx|I?) st [Ax]|* <

= Assume the approximationis only good within a ball

38

3. Batch least square

* Trust region problem:

1
min_ ||f G +J GedAx || st (| Ax ||I* <
Axp 2

= Expand it just like in G-N’s case, the incremental will be:

U)o + ADAx, = g A A% |IP =) =0

This A/ increase the semi-positive definite property of the Hessian
= Also balancing the first-order and second-order items

39

Batch least square

Other methods
= Dog-leg method

Conjugate gradient method
Quasi-Newton’s method
Pseudo-Newton’s method

You can find more in optimization books if you are interested

In SLAM, we use G-N or L-M to solve camera’s motion, pixel’s
movement, optical-flow, etc.

40

3. Batch least square

= Problem in the Practical Assignment

= Curve fitting: find best parameters a,b,c from the observation data:

Curve function: Yy = eXp(arI2 +bx +¢) + w,

= Error: v
e =Yy — exp(axi2 + bx; + c)
= Least square problem:

a,b,c

N
— argminz ly; — exp(axi2 + bx; + c)||2

1=1

41

3. Batch least square

* You are asked to solve this problem with a ceres solver (tutorial)

= Google Ceres Solver http://ceres-solver.org/

42

3. Batch least square

= Google Ceres

= An optimization library for solving least square problems
= Tutorial: http://ceres-solver.org/tutorial.html

= Define your residual class as a functor (overload the () operator)

struct ExponentialResidual {
ExponentialResidual(double x, double y)

2x_(x), y_(y) {}

template <typename T>

bool operator()(const T* const m, const T* const c, T* residual) const {
residual[@] = T(y_) - exp(m[@] * T(x_) + c[©@]);
return true;

}

private:

// Observations for a sample.
const double x_;

const double y_;

s

43

3. Batch least square

* Build the optimization problem:

double m = 0.0;

double c 0.0;

Problem problem;
for (int i = 9; i < kNumObservations; ++i) {
CostFunction* cost_function =
new AutoDiffCostFunction<ExponentialResidual, 1, 1, 1>(
new ExponentialResidual(data[2 * i], data[2 * i + 1]));
problem.AddResidualBlock(cost_function, NULL, &m, &c);

}

= With auto-diff, Ceres will compute the Jacobians for you

44 Dr. Jorg Stickler, Computer Vision Group, TUM

3. Batch least square

= Finally solve 1t by calling the Solve() function and get the result
summary

* You can set some parameters like number of iterations, stop
conditions or the linear solver type.

Solver::0Options options;
options.max_num_iterations = 25;
options. linear_solver_type = ceres::DENSE_QR;

options.minimizer_progress_to_stdout = true;

Solver: :Summary summary;

Solve(options, &problem, &summary) ;

45

3. Batch least square

* Summary

= [n the batch estimation, we estimate all the status variable given all the
measurements and input

= The batch estimation problem can be formulated into a least square
problem, after solving it we get a MAP estimation

= The least square problem can be solved by iterative methods like
gradient descent, Newton’s method, Gauss-Newton or Levernberg-
Marquardt method

= The least square problem can also be represented by a graph and forms a
(factor) graph optimization problem

46

Contents

= (Camera Intrinsic and Extrinsic

= From State Estimation to Least Squares
= Batch Least Square

* Application: Camera Calibration

47

4. Application: Camera Calibration

= Suppose we want to estimate the camera pose
= We have several observations from the projection function

* Minimizing the reprojection error:

N
1
(R,t) =T" = argminiz lu; — m(RP; + t)||5
i=1

= Where 7(-) is the projection equation (observation model)
= Corner points are detected using Apriltags
E. Olson. AprilTag: A robust and flexible visual fiducial sys-
tem. In Proceedings of the IEEE International Conference on

Robotics and Automation (ICRA), pages 3400-3407. 1EEE,
May 2011.

48

4. Application: Camera Calibration

49

4. Application: Camera Calibration

50

4. Application: Camera Calibration

= Linearize the error: e;(x @ Ax) =~ e;(x) + J(x)Ax
= Derivative 1s defined by SE(3) disturb model:
de - e(6EDPT)—e(T)
— = lim
dT 6&-0 o6&
%K(Sf D TP — %KTP
= lim
6&-0 55
_ de de OP'
= [et pP=Tp then use chain rule: T = 3P 9T
= For P° we have:
X' Y’
- - - - - — '?.L:.f;,_¢7+(.?l,, U= fy?+pq
S fe 0 ¢y X'
su | =10 Sy yio de o oV oF £ 0 L
‘ 0 0 1]]Z P & k] Lo b -

51

4. Application: Camera Calibration

= The second item:

o) 1=
or LT of

= Remove the homogeneous part:

= Put them together:

de

oT

d(TP")
o7~ P
0 B f:uX, B fIX,Y/
Z/2 Z/Q

Zrz

52

fu _ f‘yY, _f . f.l/Y,2
Y

See Lecture 2.

4. Application: Camera Calibration

= [f we want to take the derivative of Point P

u
s H = K(RP, +t) = KTP,
14;

R

de dedP’ [f,/Z' O —fX'/Z'*
oP OP' 0P 0 f£/7" —f,Y'/Z"?

= P is not relevant to translation t

53

4. Application: Camera Calibration

= Use camera models presented here to get initial projections

= Use optimization method to find the camera poses and intrinsic
parameters

= Test different models. How well do they fit the lens?

54

Questions?

55

