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1. Camera intrinsic and extrinsic

§ Go back to the first page:

§ Cameras give you the images of the world
§ How are these pixels projected from the 3D environment?
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Motion	model

Observation	model



1. Camera intrinsic and extrinsic

§ Pinhole camera
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Pin-hole	camera	model

Optical	
center

Camera’s	frame	O-x-y-z

Focal	length

Similar	triangles

By	similar	triangles:

Flip	to	the	front:	

Rearrange	it:



1. Camera intrinsic and extrinsic

§ Pinhole cameras
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Pin-hole	camera	model

Optical	
center

Camera’s	frame	O-x-y-z

Focal	length

Similar	triangles

From	image	plane	
to	pixels:

Take	into:

Then	we	get:



1. Camera intrinsic and extrinsic

§ Pinhole models: 

§ Matrix form:

§ K is called as intrinsic camera matrix
§ Which is fixed for each real camera
§ And can be calibrated before running slam.
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Put	Z	to	left:	



1. Camera intrinsic and extrinsic

§ Distance is lost during the projection
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Unit	plane

Camera	frame
Pixel	plane

Possible	position	 of	3D	point	P



1. Camera intrinsic and extrinsic

§ There’s another rotation and translation from the world to the camera 

§ Here R,t or T is called as extrinsic
§ Note we assume the homogeneous coordinates are cast to non-

homogenous coordinates automatically
§ In SLAM, the extrinsic R,t is our estimate purpose
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1. Camera intrinsic and extrinsic

§ Summary
§ Projection orders: world->camera->unit plane->pixels
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Unit	plane

Camera	frame
Pixel	plane

Possible	position	 of	3D	point	P



1. Camera intrinsic and extrinsic

§ Distortion
§ Lens will cause distortion when you have a wide range lens
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Wide	range	lens Fisheye	cameras



1. Camera intrinsic and extrinsic

§ Distortion types: radial distortion and tangential distortion
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Original	image Barrel	distortion Pincushion	 distortion

Image	plane



1. Camera intrinsic and extrinsic
Distortion
§ Mathematic form

§ Put them together

§ In practice, you can choose the order of distortion params
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𝑥"#$%&'%() = 𝑥 1 + 𝑘.𝑟0 + 𝑘0𝑟1 + 𝑘2𝑟3

𝑦)5$%&'%() = 𝑦 1 + 𝑘.𝑟0 + 𝑘0𝑟1 + 𝑘2𝑟3

Radial	distortion tangential	distortion

𝑥)5$%&'%() = 𝑥 + 2𝑝.𝑥𝑦+ 𝑝0 𝑟0 + 2𝑥0

𝑦)5$%&'%() = 𝑦 + 𝑝. 𝑟0 + 2𝑦0 + 2𝑝0𝑥𝑦

𝑥)5$%&'%() = 𝑥 1 + 𝑘.𝑟0 + 𝑘0𝑟1 + 𝑘2𝑟3 + 2𝑝.𝑥𝑦 + 𝑝0 𝑟0 + 2𝑥0

𝑦)5$%&'%() = 𝑦 1 + 𝑘.𝑟0 + 𝑘0𝑟1 + 𝑘2𝑟3 + 𝑝. 𝑟0 + 2𝑦0 + 2𝑝0𝑥𝑦



1. Camera intrinsic and extrinsic: 
(Extended) Unified Camera Models
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The Double Sphere Camera Model

Vladyslav Usenko, Nikolaus Demmel and Daniel Cremers

Abstract

In this paper, we provide

an extensive review of existing

models for large field-of-view

cameras. For each model

we provide intrinsic parameters

(i), projection (p) and

unprojection (p�1
) functions

and the subspace of points that

result in valid projection (W)

and unprojection (Q). Then, we

propose the Double Sphere

camera model that well

fits with large field-of-view

lenses, is computationally

inexpensive and has a closed-form inverse. We evaluate the model using a calibration

dataset with several different lenses and compare the models using the metrics that are relevant

for Visual Odometry, i.e., reprojection error, as well as computation time for projection and

unprojection functions and their Jacobians.

Related work

Unified Camera Model (UCM) [4] and Extended Unified Camera model (EUCM) [3]
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The Double Sphere Camera Model (DS)
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We propose the Double Sphere (DS) camera model that better fits cameras with fisheye lenses,

has a closed-form inverse, and does not require computationally expensive trigonometric

operations. In the proposed DS model a point is consecutively projected onto two unit spheres

with centers shifted by x . Then, the point is projected onto the image plane using the pinhole

model shifted by
a

1�a . This model has six parameters i = [ fx, fy,cx,cy,x ,a]T and a projection

function defined as follows:
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Evaluation

Mean Reprojection Error for Different Camera Models

Dataset
UCM [4]

5 parameters

FOV [1]

5 parameters

DS (Ours)

6 parameters

EUCM [3]

6 parameters

KB [2]

6 parameters

KB [2]

8 parameters

BF2M2020S23-1 0.236 (63.13%) 0.417 (187.90%) 0.145 (0.35%) 0.145 (0.30%) 0.164 (13.53%) 0.145 (0.00%)

BF2M2020S23-2 0.250 (59.94%) 0.490 (213.34%) 0.157 (0.23%) 0.157 (0.49%) 0.180 (15.43%) 0.156 (0.00%)

BF2M2020S23-3 0.277 (53.99%) 0.454 (151.81%) 0.180 (0.11%) 0.181 (0.47%) 0.202 (11.91%) 0.180 (0.00%)

BF5M13720-1 0.228 (49.53%) 0.307 (101.14%) 0.153 (0.00%) 0.154 (0.51%) 0.161 (5.41%) 0.153 (0.03%)

BF5M13720-2 0.250 (48.68%) 0.379 (124.91%) 0.169 (0.64%) 0.171 (1.73%) 0.183 (8.39%) 0.168 (0.00%)

BF5M13720-3 0.252 (54.99%) 0.386 (137.56%) 0.163 (0.56%) 0.165 (1.64%) 0.176 (8.51%) 0.162 (0.00%)

BM2820-1 0.238 (50.35%) 0.193 (22.10%) 0.159 (0.37%) 0.159 (0.34%) 0.159 (0.52%) 0.158 (0.00%)

BM2820-2 0.201 (60.13%) 0.163 (29.80%) 0.127 (0.90%) 0.127 (0.55%) 0.127 (0.54%) 0.126 (0.00%)

BM2820-3 0.227 (47.98%) 0.186 (21.13%) 0.154 (0.16%) 0.154 (0.15%) 0.154 (0.31%) 0.153 (0.00%)

BM4018S118-1 0.211 (11.76%) 0.208 (10.18%) 0.189 (0.03%) 0.189 (0.08%) 0.189 (0.15%) 0.189 (0.00%)

BM4018S118-2 0.247 (8.79%) 0.245 (8.19%) 0.227 (0.04%) 0.227 (0.02%) 0.227 (0.03%) 0.227 (0.00%)

BM4018S118-3 0.207 (13.69%) 0.205 (12.41%) 0.182 (0.02%) 0.182 (0.08%) 0.183 (0.17%) 0.182 (0.00%)

GOPRO-1 0.201 (36.84%) 0.150 (2.17%) 0.147 (0.04%) 0.147 (0.06%) 0.147 (0.30%) 0.147 (0.00%)

GOPRO-2 0.165 (30.52%) 0.128 (1.32%) 0.127 (0.00%) 0.127 (0.02%) 0.127 (0.25%) 0.127 (0.13%)

GOPRO-3 0.235 (40.41%) 0.171 (2.17%) 0.167 (0.09%) 0.168 (0.41%) 0.169 (1.02%) 0.167 (0.00%)

EUROC 0.137 (4.64%) 0.133 (1.21%) 0.131 (0.19%) 0.131 (0.25%) 0.132 (0.31%) 0.131 (0.00%)

Qualitative Comparison

( a ) UCM ( b ) FOV ( c ) DS

( d ) EUCM ( e ) KB6 ( f ) KB8

Lenses Used for Evaluation Time for 10000 Operations in

Microseconds

Expressions

Computed
UCM FOV DS EUCM KB 6 KB 8

p(x, i) 33.842 419.339 55.020 32.965 288.003 305.841

p(x, i), Jx, Ji 34.555 433.956 55.673 33.534 293.625 310.399

p�1(u, i) 71.945 430.109 107.054 92.735 561.174 638.150

p�1(u, i), Ju, Ji 71.079 891.556 181.119 95.883 537.291 613.287
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UCM [4]
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KB [2]
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Qualitative Comparison

( a ) UCM ( b ) FOV ( c ) DS

( d ) EUCM ( e ) KB6 ( f ) KB8

Lenses Used for Evaluation Time for 10000 Operations in

Microseconds

Expressions

Computed
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p(x, i) 33.842 419.339 55.020 32.965 288.003 305.841

p(x, i), Jx, Ji 34.555 433.956 55.673 33.534 293.625 310.399

p�1(u, i) 71.945 430.109 107.054 92.735 561.174 638.150

p�1(u, i), Ju, Ji 71.079 891.556 181.119 95.883 537.291 613.287
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In this paper, we provide

an extensive review of existing

models for large field-of-view

cameras. For each model

we provide intrinsic parameters

(i), projection (p) and

unprojection (p�1
) functions

and the subspace of points that

result in valid projection (W)

and unprojection (Q). Then, we

propose the Double Sphere

camera model that well

fits with large field-of-view

lenses, is computationally

inexpensive and has a closed-form inverse. We evaluate the model using a calibration

dataset with several different lenses and compare the models using the metrics that are relevant

for Visual Odometry, i.e., reprojection error, as well as computation time for projection and

unprojection functions and their Jacobians.
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model shifted by
a

1�a . This model has six parameters i = [ fx, fy,cx,cy,x ,a]T and a projection

function defined as follows:

Projection

p(x, i) =

"
fx

x
ad2+(1�a)(x d1+z)

fy
y

ad2+(1�a)(x d1+z)

#
+


cx
cy

�
, (12)

d1 =
p

x2+ y2+ z2, (13)

d2 =
p

x2+ y2+(x d1+ z)2, (14)

Projection is valid for:

W = {x 2 R3 | z >�w2d1}, (15)

w2 =
w1+xp

2w1x +x 2+1
(16)

w1 =

(
a

1�a , if a  0.5
1�a

a if a > 0.5
(17)

Unprojection

p�1(u, i) =
mzx +

p
m2

z +(1�x 2)r2

m2
z + r2

2

4
mx
my
mz

3

5�

2

4
0
0
x

3

5 ,

(18)

mx =
u� cx

fx
, (19)

my =
v� cy

fy
, (20)

r2 = m2
x +m2

y, (21)

mz =
1�a2r2

a
p

1� (2a �1)r2+1�a
(22)

Unprojection is valid for:

Q =

(
R2

if a  0.5
{u 2 R2 | r2  1

2a�1} if a > 0.5
(23)
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Evaluation

Mean Reprojection Error for Different Camera Models

Dataset
UCM [4]

5 parameters

FOV [1]

5 parameters

DS (Ours)

6 parameters

EUCM [3]

6 parameters

KB [2]

6 parameters

KB [2]

8 parameters

BF2M2020S23-1 0.236 (63.13%) 0.417 (187.90%) 0.145 (0.35%) 0.145 (0.30%) 0.164 (13.53%) 0.145 (0.00%)

BF2M2020S23-2 0.250 (59.94%) 0.490 (213.34%) 0.157 (0.23%) 0.157 (0.49%) 0.180 (15.43%) 0.156 (0.00%)

BF2M2020S23-3 0.277 (53.99%) 0.454 (151.81%) 0.180 (0.11%) 0.181 (0.47%) 0.202 (11.91%) 0.180 (0.00%)

BF5M13720-1 0.228 (49.53%) 0.307 (101.14%) 0.153 (0.00%) 0.154 (0.51%) 0.161 (5.41%) 0.153 (0.03%)

BF5M13720-2 0.250 (48.68%) 0.379 (124.91%) 0.169 (0.64%) 0.171 (1.73%) 0.183 (8.39%) 0.168 (0.00%)

BF5M13720-3 0.252 (54.99%) 0.386 (137.56%) 0.163 (0.56%) 0.165 (1.64%) 0.176 (8.51%) 0.162 (0.00%)

BM2820-1 0.238 (50.35%) 0.193 (22.10%) 0.159 (0.37%) 0.159 (0.34%) 0.159 (0.52%) 0.158 (0.00%)

BM2820-2 0.201 (60.13%) 0.163 (29.80%) 0.127 (0.90%) 0.127 (0.55%) 0.127 (0.54%) 0.126 (0.00%)

BM2820-3 0.227 (47.98%) 0.186 (21.13%) 0.154 (0.16%) 0.154 (0.15%) 0.154 (0.31%) 0.153 (0.00%)

BM4018S118-1 0.211 (11.76%) 0.208 (10.18%) 0.189 (0.03%) 0.189 (0.08%) 0.189 (0.15%) 0.189 (0.00%)

BM4018S118-2 0.247 (8.79%) 0.245 (8.19%) 0.227 (0.04%) 0.227 (0.02%) 0.227 (0.03%) 0.227 (0.00%)

BM4018S118-3 0.207 (13.69%) 0.205 (12.41%) 0.182 (0.02%) 0.182 (0.08%) 0.183 (0.17%) 0.182 (0.00%)

GOPRO-1 0.201 (36.84%) 0.150 (2.17%) 0.147 (0.04%) 0.147 (0.06%) 0.147 (0.30%) 0.147 (0.00%)

GOPRO-2 0.165 (30.52%) 0.128 (1.32%) 0.127 (0.00%) 0.127 (0.02%) 0.127 (0.25%) 0.127 (0.13%)

GOPRO-3 0.235 (40.41%) 0.171 (2.17%) 0.167 (0.09%) 0.168 (0.41%) 0.169 (1.02%) 0.167 (0.00%)

EUROC 0.137 (4.64%) 0.133 (1.21%) 0.131 (0.19%) 0.131 (0.25%) 0.132 (0.31%) 0.131 (0.00%)

Qualitative Comparison

( a ) UCM ( b ) FOV ( c ) DS

( d ) EUCM ( e ) KB6 ( f ) KB8

Lenses Used for Evaluation Time for 10000 Operations in

Microseconds

Expressions

Computed
UCM FOV DS EUCM KB 6 KB 8

p(x, i) 33.842 419.339 55.020 32.965 288.003 305.841

p(x, i), Jx, Ji 34.555 433.956 55.673 33.534 293.625 310.399

p�1(u, i) 71.945 430.109 107.054 92.735 561.174 638.150

p�1(u, i), Ju, Ji 71.079 891.556 181.119 95.883 537.291 613.287

Figure 2: Point projections after optimization.

models fits the lenses that were used to collect the dataset. Provide summary
and analysis of the calibration results in the PDF file.

Submission instructions

A complete submission consists both of a PDF file with the solutions/answers to
the questions on the exercise sheet and a merge request against the master branch
with the source code that you used to solve the given problems. Please note your
name in the PDF file. Please submit your PDF file with solutions via email to
visnav ws2018@vision.in.tum.de.
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1. Camera intrinsic and extrinsic

§ Stereo camera
§ Two cameras (usually) placed horizontally

§ The distance between left camera center to the right is called as baseline
§ From geometric model:

17

Left	eye Right	eye

Left	pixel Right	pixel

baseline
Geometric	model
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Structured	 light

emit return emitreturn

Time-of-Flight

lag

IR	emitter IR	receiver
IR	emitter

RGB	camera

IR	receiver

impulse	
emitterimpulse	receiver

1. Camera intrinsic and extrinsic



1. Camera intrinsic and extrinsic

§ Images
§ 2D arrays stored in computer
§ Usually 0-255 (1 byte) grayscale values after quantification

19

Origin X-axis,	width

Y-axis,	
height

Image

Pixel	coordinates	(x,y)

In	each	pixel

Grayscale	image:	0-255	(1	byte)
Depth	images:	0-65535	(2	bytes)
Color	 images:	multiple	channels

BGR,	RGB,	RGBA,	etc
1	byte	for	each	channel

24	bits
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§ From State Estimation to Least Squares
§ Batch Least Square
§ Application: Camera Calibration
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2. From state estimation to least square

§ Recall the motion model and observation model

§ How to estimate the unknown variables given the observation data?

21



2. Batch state estimation

§ Batch approach
§ Give all the measurements
§ To estimate all the state variables

§ State variables:

§ Our purpose:

§ Bayes’ Rule:

22

Observation	and	input:

𝑢 = 𝑢.,𝑢0, ⋯ , 𝑧 = 𝑧<,=

𝑝 𝑥|𝑢, 𝑧 =
𝑃 𝑧|𝑥, 𝑢 𝑝 𝑥|𝑢

𝑃 𝑧|𝑢

Posteriori

Likehood Priori



2. From state estimation to least square

§ It is usually hard to write out the full distribution of Bayes’ formula, 
but we can:

§ MAP: Maximum A Posteriori

§ “In which state it is most likely to produce such measurements”

23

𝑥@AB = argmax
H
𝑃 𝑥|𝑢, 𝑧 = argmax

𝑃 𝑧|𝑥, 𝑢 𝑃 𝑥|𝑢
𝑃(𝑧|𝑢)

= argmax𝑃 𝑧|𝑥 𝑃(𝑥|𝑢)

Drop	u	because	z	is	not	relevant	with	u

Drop	denominator	 because	it	
is	not	relevant	with	x



2. From state estimation to least square

§ From MAP to batch least square
§ We assume the noise variables are independent, so that the joint pdf 

can be factorized:

§ Let’s consider a single observation:
§ Affected by white Gaussian noise:

§ The observation model gives us a conditional pdf:

§ Then how to compute the MAP of x,y given z?

24

𝑃 𝑧|𝑥 =K𝑃 𝑧<|𝑥<

L

<MN

𝑣<,=~𝑁 0, 𝑄<,=



2. From state estimation to least square

§ Gaussian distribution (matrix form)

§ Take minus logarithm at both sides:

§ Maximum of P(x) is equivalent to minimum of –ln(P(x))

25

Constant	w.r.t	x Mahalanobis distance	(sigma-norm)



2. From state estimation to least square

§ Take this into the MAP:

§ We turn a MAP problem into a least square problem

26

𝑥<,𝑦= = argmin 𝑧<,= − ℎ 𝑦= , 𝑥<
X
𝑄= ,<Y. 𝑧<,= − ℎ 𝑦=, 𝑥<

Max:

Error	or	residual	of	single	observation

Information	matrix



2. From state estimation to least square

§ Batch least square
§ Original problem 

§ Sum of the squared residuals:

27

𝑥@AB = argmax𝑃 𝑧|𝑥 𝑃 𝑥|𝑢

Least	square
Define	the	errors(residuals)

min



2. From state estimation to least square

§ Some notes:
§ Because of noise, when we take the estimated trajectory and map into the 

models, they won’t fit perfectly
§ Then we adjust our estimation to get a better estimation (minimize the 

error)
§ The error distribution is affected by noise distribution (information 

matrix)
§ Structure of the least square problem

§ Sum of many squared errors
§ The dimension of total state variable maybe high
§ But single error item is easy (only related to two states in our case)
§ If we use Lie group and Lie algebra, then it’s a non-constrained least 

square

28
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3. Batch least square

§ How to solve a least square problem?
§ Non-linear, discrete time, non-constrained

§ Let’s start from a simple example

§ Consider minimizing a squared error:
§ When J is simple, just solve: 

§ And we will find the maxima/minima/saddle points

30

min	𝐽 𝑥 = min
1
2 ‖𝑓 𝑥 ‖00

𝑑𝐽
𝑑𝑥 = 0



3. Batch least square

§ When J is a complicated function:
§ dJ/dx=0 is hard to solve
§ We use iterative methods

§ Iterative methods
1. Start from a initial estimation
2. At iteration     , we find a incremental         to make                               

become smaller
3. If        is small enough, stop (converged)
4. If not, set                              and return to step 2.

31

𝑥N
𝑘 𝛥𝑥< ‖𝑓 𝑥< + 𝛥𝑥< ‖00

𝛥𝑥<
𝑥<`. = 𝑥< + 𝛥𝑥<



3. Batch least square

§ How to find the incremental part?
§ By the gradient
§ Taylor expansion of the object function:

§ First order methods and second order methods
§ First order: (Steepest descent)

32

Jacobian Hessian

min
aH
‖𝑓 𝑥 ‖00 + 𝐽𝛥𝑥 Incremental	will	be:

Usually	we	need	a	step	size



3. Batch least square

§ Zig-zag in steepest descent

33

Other	shortcomings
• Slow	convergence	speed
• Slow	when	close	to	the	minimum



3. Batch least square

§ Second order methods

§ Solve an increment to minimize it:

§ Let the derivative to       be zero, then we get:   

§ This is called Newton’s method

34

𝛥𝑥



3. Batch least square

§ Second order method converges more quickly than first order 
methods

§ But the Hessian matrix maybe hard to compute:

§ Can we avoid the Hessian matrix and also keep second order’s 
convergence speed?
§ Gauss-Newton
§ Levenberg-Marquardt

35



3. Batch least square

§ Gauss-Newton
§ Taylor expansion of f(x):  
§ Then the squared error becomes:

§ Also let its derivative with        be zero:

36

𝛥𝑥

𝐻 𝑔



3. Batch least square

§ Gauss-Newton use                   as an approximation of the Hessian
§ Therefore avoiding the computation of H in the Newton’s method

§ But                  is only semi-positive definite
§ H maybe singular when J^T J has null space

37

𝐽 𝑥 X𝐽 𝑥

𝐽 𝑥 X𝐽 𝑥



3. Batch least square

§ Levernberg-Marquardt method
§ Trust region approach: approximation is only valid in a region
§ Evaluate if the approximation is good:

§ If rho is large, increase the region
§ If rho is small, decrease the region

§ LM optimization:
§ Assume the approximation is only good within a ball 

38

Real	descent/approx.	descent

min
aHd

1
2 ‖𝑓 𝑥< + 𝐽 𝑥< 𝛥𝑥<‖0, 𝑠. 𝑡. ‖𝛥𝑥<‖0 ≤ 𝜇



3. Batch least square

§ Trust region problem:

§ Expand it just like in G-N’s case, the incremental will be:

§ This       increase the semi-positive definite property of the Hessian
§ Also balancing the first-order and second-order items

39

min
aHd

1
2 ‖𝑓 𝑥< + 𝐽 𝑥< 𝛥𝑥<‖0, 𝑠. 𝑡. ‖𝛥𝑥<‖0 ≤ 𝜇

𝐽 𝑥< X𝐽 𝑥< + 𝜆𝐼 𝛥𝑥< = 𝑔

𝜆𝐼

𝜆 ‖𝛥𝑥<‖0 − 𝜇 = 0



3. Batch least square

§ Other methods
§ Dog-leg method
§ Conjugate gradient method
§ Quasi-Newton’s method
§ Pseudo-Newton’s method
§ …

§ You can find more in optimization books if you are interested

§ In SLAM, we use G-N or L-M to solve camera’s motion, pixel’s 
movement, optical-flow, etc.

40



3. Batch least square

§ Problem in the Practical Assignment
§ Curve fitting: find best parameters a,b,c from the observation data:

§ Error:

§ Least square problem:

41

Curve	function:

𝑒5 = 𝑦5 − exp 𝑎𝑥50 + 𝑏𝑥5 + 𝑐

𝑎, 𝑏, 𝑐

= argminr‖𝑦5 − exp 𝑎𝑥50 + 𝑏𝑥5 + 𝑐 ‖0
s

5M.



3. Batch least square

§ You are asked to solve this problem with a ceres solver (tutorial)
§ Google Ceres Solver http://ceres-solver.org/

42



3. Batch least square

§ Google Ceres
§ An optimization library for solving least square problems
§ Tutorial: http://ceres-solver.org/tutorial.html
§ Define your residual class as a functor (overload the () operator)

43



3. Batch least square

§ Build the optimization problem:

§ With auto-diff, Ceres will compute the Jacobians for you

Dr.	Jörg	Stückler,	Computer	Vision	Group,	TUM44



3. Batch least square

§ Finally solve it by calling the Solve() function and get the result 
summary

§ You can set some parameters like number of iterations, stop 
conditions or the linear solver type.
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3. Batch least square

§ Summary
§ In the batch estimation, we estimate all the status variable given all the 

measurements and input
§ The batch estimation problem can be formulated into a least square 

problem, after solving it we get a MAP estimation
§ The least square problem can be solved by iterative methods like 

gradient descent, Newton’s method, Gauss-Newton or Levernberg-
Marquardt method

§ The least square problem can also be represented by a graph and forms a 
(factor) graph optimization problem

46
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4. Application: Camera Calibration

§ Suppose we want to estimate the camera pose
§ We have several observations from the projection function
§ Minimizing the reprojection error:

§ Where          is the projection equation (observation model)
§ Corner points are detected using Apriltags

48

𝑅, 𝑡 ∗ = 𝑇∗ = argmin
1
2
r‖𝑢5 − 𝜋 𝑅𝑃5 + 𝑡 ‖00
s

5M.

𝜋 ⋅

6. Conclusion

In this paper, we present the novel Double Sphere camera
model that is well suited to fisheye cameras. We compare
the proposed camera model to other state-of-the-art camera
models. In addition, we provide an extensive evaluation of
the presented camera models using 16 different calibration
sequences and six different lenses. The evaluation results
demonstrate that the model based on high-order polynomi-
als (i.e., KB 8) shows the lowest reprojection error but is
5-10 times slower than competing models. Both the pro-
posed DS model and the EUCM show very low reprojec-
tion error, with the DS model being slightly more accurate
(less than 1% greater reprojection error compared to KB 8
on all sequences), and the EUCM being slightly faster (nine
times faster projection evaluation than KB 8). Moreover,
both models have a closed-form inverse and do not require
computationally expensive trigonometric operations.

These results demonstrate that models based on spheri-
cal projection present a good alternative to models based on
high-order polynomials for applications where fast projec-
tion, unprojection and a closed-form inverse are required.
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4. Application: Camera Calibration

49

and compute the coordinates of the projected points (magenta). By minimizing the
di↵erence between detected points and projected points we can perform the camera
calibration.

• Implement the point projection in the compute projections() function and
test the code by running

./ build/calibration --dataset -path data/euroc_calib/

If your implementation is correct you should be able to see the projections as
in Figure 1. At the moment it is OK that the fitting is not perfect, because we
use the approximate calibration and poses from the initialization procedure.

Figure 1: Point projections with initial calibration. Detected point shown in red
and projected point are shown in magenta.

• Implement the ReprojectionCostFunctor in include/reprojection.h and
optimize() function in src/calibrate.cpp to minimize the reporjection er-
ror using Ceres. If your implementation is correct, after optimization the
projected corners should well align with detected corners as shown in Fig-
ure 2.

• As you have noticed the code supports di↵erent camera models (pinhole, ds,
eucm, kb4) with the command line parameter. For example:

./ build/calibration --dataset -path data/euroc_calib/

--cam -model kb4

Run the calibration for all models. Inspect the output of the program to find
a quantitative measure that can be used to determine how well the camera

2



4. Application: Camera Calibration

50Figure 2: Point projections after optimization.

models fits the lenses that were used to collect the dataset. Provide summary
and analysis of the calibration results in the PDF file.

Submission instructions

A complete submission consists both of a PDF file with the solutions/answers to
the questions on the exercise sheet and a merge request against the master branch
with the source code that you used to solve the given problems. Please note your
name in the PDF file. Please submit your PDF file with solutions via email to
visnav ws2018@vision.in.tum.de.
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4. Application: Camera Calibration

§ Linearize the error:
§ Derivative is defined by SE(3) disturb model:

§ Let               then use chain rule:
§ For         we have:

51

𝑒5 𝑥 ⊕ 𝛥𝑥 ≈ 𝑒5 𝑥 + 𝐽 𝑥 𝛥𝑥

𝜕𝑒
𝜕𝑇 = lim

}~→N

𝑒 𝛿𝜉 ⊕ 𝑇 − 𝑒 𝑇
𝛿𝜉

= lim
}~→N

1
𝑍 𝐾 𝛿𝜉 ⊕ 𝑇 𝑃 − 1

𝑍𝐾𝑇𝑃
𝛿𝜉

𝑃′ = 𝑇𝑃
𝜕𝑒
𝜕𝑇 =

𝜕𝑒
𝜕𝑃′

𝜕𝑃′
𝜕𝑇

𝑃′



4. Application: Camera Calibration

§ The second item:
§ Remove the homogeneous part:

§ Put them together:

52

𝜕(𝑇𝑃′)
𝜕𝑇 = 𝐼 −𝑃′∧

0X 0X
See	Lecture	2.

𝜕(𝑇𝑃′)
𝜕𝑇 = 𝐼 −𝑃′∧

𝜕𝑒
𝜕𝑇



4. Application: Camera Calibration

§ If we want to take the derivative of Point P

§ P is not relevant to translation t
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𝑠
𝑢
𝑣
1 5

= 𝐾 𝑅𝑃5 + 𝑡 = 𝐾𝑇𝑃5

𝜕𝑒
𝜕𝑃 =

𝜕𝑒
𝜕𝑃′

𝜕𝑃′
𝜕𝑃 = −

𝑓H 𝑍⁄ ′ 0 −𝑓H𝑋 ′ 𝑍⁄ ′0

0 𝑓� 𝑍⁄ ′ −𝑓�𝑌 ′ 𝑍⁄ ′0 𝑅



4. Application: Camera Calibration

§ Use camera models presented here to get initial projections
§ Use optimization method to find the camera poses and intrinsic 

parameters
§ Test different models. How well do they fit the lens?
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Questions?
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